OFFSET
1,1
LINKS
Zhining Yang, Table of n, a(n) for n = 1..300
Project Euler, Problem 788. Dominating Numbers
FORMULA
a(n) = Sum_{m=1..n} Sum_{k=floor(m/2)+1..m} C(m,k)*9^(m-k+1).
a(n+4) = ((16560 + 14040*n + 2880*n^2)*a(n) - (18036 + 15444*n + 3168*n^2)*a(n+1) + (858 + 934*n + 208*n^2)*a(n+2) + (678 + 517*n + 88*n^2)*a(n+3))/(60 + 47*n + 8*n^2).
a(n+5) = -((1440 + 720*n)*a(n) + (-3024 - 1152*n)*a(n+1) + (1668 + 448*n)*a(n+2) + (-28 - 4*n)*a(n+3) + (-61 - 13*n)*a(n+4))/(5+n).
EXAMPLE
a(2) = 18 because there are 18 numbers less than 10^2 in which more than half of the digits are the same: {1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99}.
MATHEMATICA
a[n_]:=Sum[Sum[Binomial[m, k]9^(m-k+1), {k, Floor[m/2]+1, m}], {m, 1, n}]; Array[a, 24] (* Stefano Spezia, Apr 29 2022 *)
PROG
(Python)
import math
def a(n):
return(sum(sum(math.comb(m, i)*9**(m-i+1) for i in range(m//2+1, m+1)) for m in range(1, n+1)))
print([a(i) for i in range(1, 21)])
(Python)
def a(n):
r=[0, 9, 18, 270, 603]
for i in range(n):
r.append(-((1440+720*i)*r[i]+(-3024-1152*i)*r[1+i]+(1668+448*i)*r[2+i]+(-28-4*i)*r[3+i]+(-61-13*i)*r[4+i])//(5+i))
return r[n]
print([a(i) for i in range(1, 21)])
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Zhining Yang, Apr 29 2022
STATUS
approved