login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A353183 Number of numbers < 10^n in which more than half of the digits are the same. 2
9, 18, 270, 603, 8307, 19737, 265257, 653742, 8672022, 21893256, 288028728, 739651770, 9675345546, 25164110070, 327788101782, 860977172187, 11178969569667, 29595164756157, 383284574197677, 1021259144052675, 13198843891723059, 35357274978994503, 456176418630573735, 1227566989710948393 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n) = Sum_{m=1..n} Sum_{k=floor(m/2)+1..m} C(m,k)*9^(m-k+1).
a(n+4) = ((16560 + 14040*n + 2880*n^2)*a(n) - (18036 + 15444*n + 3168*n^2)*a(n+1) + (858 + 934*n + 208*n^2)*a(n+2) + (678 + 517*n + 88*n^2)*a(n+3))/(60 + 47*n + 8*n^2).
a(n+5) = -((1440 + 720*n)*a(n) + (-3024 - 1152*n)*a(n+1) + (1668 + 448*n)*a(n+2) + (-28 - 4*n)*a(n+3) + (-61 - 13*n)*a(n+4))/(5+n).
EXAMPLE
a(2) = 18 because there are 18 numbers less than 10^2 in which more than half of the digits are the same: {1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99}.
MATHEMATICA
a[n_]:=Sum[Sum[Binomial[m, k]9^(m-k+1), {k, Floor[m/2]+1, m}], {m, 1, n}]; Array[a, 24] (* Stefano Spezia, Apr 29 2022 *)
PROG
(Python)
import math
def a(n):
return(sum(sum(math.comb(m, i)*9**(m-i+1) for i in range(m//2+1, m+1)) for m in range(1, n+1)))
print([a(i) for i in range(1, 21)])
(Python)
def a(n):
r=[0, 9, 18, 270, 603]
for i in range(n):
r.append(-((1440+720*i)*r[i]+(-3024-1152*i)*r[1+i]+(1668+448*i)*r[2+i]+(-28-4*i)*r[3+i]+(-61-13*i)*r[4+i])//(5+i))
return r[n]
print([a(i) for i in range(1, 21)])
CROSSREFS
Cf. A353181, A353182 (first differences).
Sequence in context: A050685 A278588 A133361 * A005400 A134115 A071587
KEYWORD
nonn,base,easy
AUTHOR
Zhining Yang, Apr 29 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 16:44 EST 2023. Contains 367563 sequences. (Running on oeis4.)