The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005400 High temperature series for spin-1/2 Heisenberg specific heat on 2D hexagonal lattice.
(Formerly M4603)
0, 9, 18, -306, -3240, 49176, 1466640, -13626000, -1172668032, 75256704, 1392243773184, 18426692664576, -2213592367094784 (list; graph; refs; listen; history; text; internal format)
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
G. A. Baker Jr., H. E. Gilbert, J. Eve, and G. S. Rushbrooke, On the two-dimensional, spin-1/2 Heisenberg ferromagnetic models, Phys. Lett., 25A (1967), 207-209.
N. Elstner, R. R. P. Singh and A. P. Young, Finite temperature properties of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice, Phys. Rev. Lett., 71 (1993), 1629-1632.
J. Oitmaa and E. Bornilla, High-temperature-series study of the spin-1/2 Heisenberg ferromagnet, Phys. Rev. B, 53 (1996), 14228.
Sequence in context: A278588 A133361 A353183 * A134115 A071587 A061750
Better description from Steven Finch
a(11)-a(12) added from Oitmaa and Bornilla by Andrey Zabolotskiy, Oct 20 2021
a(13) from Elstner et al. (see table I; signs differ because they consider antiferromagnet, and they mention energy instead of specific heat because the same coefficients are involved, cf. Eqs. (11) and (13) from Oitmaa & Bornilla) added by Andrey Zabolotskiy, Jun 17 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 04:08 EST 2023. Contains 367681 sequences. (Running on oeis4.)