login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061750
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 9.
19
0, 9, 18, 1017, 1091016, 109181091015, 109181017109181091014, 1091810171091016109181017109181091013, 10918101710910161091810910151091810171091016109181017109181091012
OFFSET
0,2
COMMENTS
In A061511-A061522, A061746-A061750 when the incremented digit exceeds 9 it is written as a 2-digit string. So 9+1 becomes the 2-digit string 10, etc.
Considering each term as a sequence of digits, the sequence converges to the limit 109181017109101610918109..... - M. F. Hasler, Jun 24 2016
a(13) has 1078 decimal digits. - Michael De Vlieger, Jun 24 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..12
MATHEMATICA
NestList[FromDigits@ Flatten@ Map[IntegerDigits, IntegerDigits@ # + 9] &, 0, 8] (* Michael De Vlieger, Jun 24 2016, after Harvey P. Dale at A061512 *)
PROG
(PARI) A061750(n=2, a=9, m=9)={for(n=2, n, a=eval(concat(apply(t->Str(t+m), digits(a))))); if(n, a)} \\ If only the 2nd argument is given, then the operation is applied once to that argument. - M. F. Hasler, Jun 24 2016
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, May 08 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
STATUS
approved