login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340332
E.g.f.: Sum_{n>=0} x^n * exp(3*2^n*x) / n!.
2
1, 4, 22, 172, 1906, 30004, 670042, 21232012, 953930146, 60764655844, 5485191552682, 701608383497212, 127123579686312946, 32624630107479118804, 11856598040266426776442, 6101496890841018365899372, 4445361041794934079330768706, 4585062274218901537813324793284
OFFSET
0,2
COMMENTS
The e.g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/n! * exp(q*r^n) = Sum_{n>=0} q^n/n! * exp(p*r^n) ;
here, p = x, q = 3*x, and r = 2.
FORMULA
The e.g.f. satisfies the following relations.
(1) Sum_{n>=0} x^n * exp(3*2^n*x) / n!.
(2) Sum_{n>=0} 3^n*x^n * exp(2^n*x) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 22*x^2/2! + 172*x^3/3! + 1906*x^4/4! + 30004*x^5/5! + 670042*x^6/6! + 21232012*x^7/7! + 953930146*x^8/8! + 60764655844*x^9/9! + ...
where
A(x) = exp(3*x) + x*exp(3*2*x) + x^2*exp(3*2^2*x)/2! + x^3*exp(3*2^3*x)/3! + x^4*exp(3*2^4*x)/4! + x^5*exp(3*2^5*x)/5! + ...
also
A(x) = exp(x) + 3*x*exp(2*x) + 3^2*x^2*exp(2^2*x)/2! + 3^3*x^3*exp(2^3*x)/3! + 3^4*x^4*exp(2^4*x)/4! + 3^5*x^5*exp(2^5*x)/5! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^m/m! * exp(3*2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, 3^m*x^m/m! * exp(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A340450.
Sequence in context: A353186 A346665 A379039 * A207654 A197923 A294343
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2021
STATUS
approved