login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207654 G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1)/(1 - x^(2*k-1)). 4
1, 1, 4, 22, 173, 1816, 23659, 367573, 6622465, 135637477, 3111148862, 78984029782, 2198423489832, 66562555228478, 2177861372888738, 76571625673934064, 2878937040339348981, 115260759545001030638, 4895471242828376133806, 219853190410155476470763 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.

FORMULA

From Vaclav Kotesovec, Oct 31 2014: (Start)

a(n) ~ sqrt(6) * 24^n * n! / (exp(Pi^2/48) * sqrt(n) * Pi^(2*n+3/2)).

a(n) ~ 2^n * 12^(n+1/2) * n^n / (exp(n + Pi^2/48) * Pi^(2*n+1)).

(End)

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 173*x^4 + 1816*x^5 + 23659*x^6 +...

such that, by definition,

A(x) = 1 + ((1+x)-1)/(1-x) + ((1+x)-1)*((1+x)^3-1)/((1-x)*(1-x^3)) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/((1-x)*(1-x^3)*(1-x^5)) +...

MATHEMATICA

With[{nn=20}, CoefficientList[Series[Sum[Product[((1+x)^(2k-1)-1)/(1- x^(2k-1)), {k, n}], {n, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Sep 06 2015 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+x)^(2*k-1)-1)/(1-x^(2*k-1) +x*O(x^n)) )), n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A207651, A207652, A207653.

Sequence in context: A353186 A346665 A340332 * A197923 A294343 A259842

Adjacent sequences:  A207651 A207652 A207653 * A207655 A207656 A207657

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 05:51 EDT 2022. Contains 354005 sequences. (Running on oeis4.)