login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207654
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1)/(1 - x^(2*k-1)).
4
1, 1, 4, 22, 173, 1816, 23659, 367573, 6622465, 135637477, 3111148862, 78984029782, 2198423489832, 66562555228478, 2177861372888738, 76571625673934064, 2878937040339348981, 115260759545001030638, 4895471242828376133806, 219853190410155476470763
OFFSET
0,3
LINKS
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
From Vaclav Kotesovec, Oct 31 2014: (Start)
a(n) ~ sqrt(6) * 24^n * n! / (exp(Pi^2/48) * sqrt(n) * Pi^(2*n+3/2)).
a(n) ~ 2^n * 12^(n+1/2) * n^n / (exp(n + Pi^2/48) * Pi^(2*n+1)).
(End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 173*x^4 + 1816*x^5 + 23659*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1)/(1-x) + ((1+x)-1)*((1+x)^3-1)/((1-x)*(1-x^3)) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/((1-x)*(1-x^3)*(1-x^5)) +...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sum[Product[((1+x)^(2k-1)-1)/(1- x^(2k-1)), {k, n}], {n, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+x)^(2*k-1)-1)/(1-x^(2*k-1) +x*O(x^n)) )), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved