OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
From Vaclav Kotesovec, Oct 31 2014: (Start)
a(n) ~ sqrt(6) * 24^n * n! / (exp(Pi^2/48) * sqrt(n) * Pi^(2*n+3/2)).
a(n) ~ 2^n * 12^(n+1/2) * n^n / (exp(n + Pi^2/48) * Pi^(2*n+1)).
(End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 173*x^4 + 1816*x^5 + 23659*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1)/(1-x) + ((1+x)-1)*((1+x)^3-1)/((1-x)*(1-x^3)) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/((1-x)*(1-x^3)*(1-x^5)) +...
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sum[Product[((1+x)^(2k-1)-1)/(1- x^(2k-1)), {k, n}], {n, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+x)^(2*k-1)-1)/(1-x^(2*k-1) +x*O(x^n)) )), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2012
STATUS
approved