The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259842 Number of nonzero elements in all n X n Tesler matrices of nonnegative integers. 1
 1, 4, 22, 178, 2114, 36398, 896128, 31136246, 1508259823, 100727634758, 9179951931947, 1131033520118692, 186769092227016256, 41008206412935719870, 11884278052476825052541, 4514826724675651497522250, 2234142899928806917974566378, 1431533853656098851281985968328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For the definition of Tesler matrices see A008608. LINKS FORMULA a(n) = Sum_{k=1..n} A259841(n,k). EXAMPLE There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing four nonzero elements, thus a(2) = 4. MAPLE g:= u-> `if`(u=0, 0, 1): b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0,      (p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add(      (p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l)))       , j=0..n))))(nops(l))     end: a:= n-> b(1, n-1, [0\$(n-1)])[2]: seq(a(n), n=1..14); MATHEMATICA g[u_] := If[u == 0, 0, 1]; b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0,      # + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 ->      Nothing]]], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[      l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]]; a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* Jean-François Alcover, May 15 2022, after Alois P. Heinz *) CROSSREFS Row sums of A259841. Cf. A008608. Sequence in context: A207654 A197923 A294343 * A125863 A004115 A222885 Adjacent sequences:  A259839 A259840 A259841 * A259843 A259844 A259845 KEYWORD nonn,changed AUTHOR Alois P. Heinz, Jul 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 12:03 EDT 2022. Contains 353807 sequences. (Running on oeis4.)