login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1)/(1 - x^(2*k-1)).
4

%I #17 Feb 07 2020 13:38:40

%S 1,1,4,22,173,1816,23659,367573,6622465,135637477,3111148862,

%T 78984029782,2198423489832,66562555228478,2177861372888738,

%U 76571625673934064,2878937040339348981,115260759545001030638,4895471242828376133806,219853190410155476470763

%N G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1)/(1 - x^(2*k-1)).

%H Vaclav Kotesovec, <a href="/A207654/b207654.txt">Table of n, a(n) for n = 0..200</a>

%H Hsien-Kuei Hwang, Emma Yu Jin, <a href="https://arxiv.org/abs/1911.06690">Asymptotics and statistics on Fishburn matrices and their generalizations</a>, arXiv:1911.06690 [math.CO], 2019.

%F From _Vaclav Kotesovec_, Oct 31 2014: (Start)

%F a(n) ~ sqrt(6) * 24^n * n! / (exp(Pi^2/48) * sqrt(n) * Pi^(2*n+3/2)).

%F a(n) ~ 2^n * 12^(n+1/2) * n^n / (exp(n + Pi^2/48) * Pi^(2*n+1)).

%F (End)

%e G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 173*x^4 + 1816*x^5 + 23659*x^6 +...

%e such that, by definition,

%e A(x) = 1 + ((1+x)-1)/(1-x) + ((1+x)-1)*((1+x)^3-1)/((1-x)*(1-x^3)) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/((1-x)*(1-x^3)*(1-x^5)) +...

%t With[{nn=20},CoefficientList[Series[Sum[Product[((1+x)^(2k-1)-1)/(1- x^(2k-1)),{k,n}],{n,0,nn}],{x,0,nn}],x]] (* _Harvey P. Dale_, Sep 06 2015 *)

%o (PARI) {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,((1+x)^(2*k-1)-1)/(1-x^(2*k-1) +x*O(x^n)) )),n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A207651, A207652, A207653.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 19 2012