OFFSET
0,3
COMMENTS
The g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;
here, p = x*A(x), q = x^2*A(x), and r = A(x).
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * A(x)^n / (1 - x^2*A(x)^(n+1)).
(2) A(x) = Sum_{n>=0} x^(2*n) * A(x)^n / (1 - x*A(x)^(n+1)).
(3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(n^2+n) * (1 - x^3*A(x)^(2*n+2)) / ((1 - x*A(x)^(n+1))*(1 - x^2*A(x)^(n+1))).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 27*x^4 + 95*x^5 + 358*x^6 + 1401*x^7 + 5667*x^8 + 23502*x^9 + 99499*x^10 + 428464*x^11 + 1871746*x^12 + ...
where
A(x) = 1/(1 - x^2*A(x)) + x*A(x)/(1 - x^2*A(x)^2) + x^2*A(x)^2/(1 - x^2*A(x)^3) + x^3*A(x)^3/(1 - x^2*A(x)^4) + x^4*A(x)^4/(1 - x^2*A(x)^5) + ...
also
A(x) = 1/(1 - x*A(x)) + x^2*A(x)/(1 - x*A(x)^2) + x^4*A(x)^2/(1 - x*A(x)^3) + x^6*A(x)^3/(1 - x*A(x)^4) + x^8*A(x)^4/(1 - x*A(x)^5) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*A^m /(1 - x^2*A^(m+1) +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^(2*m)*A^m /(1 - x*A^(m+1) +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 11 2021
STATUS
approved