login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340356
G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n / (1 - x^(n+1)*A(x)^2).
8
1, 2, 6, 27, 144, 848, 5294, 34385, 229895, 1571526, 10933068, 77154348, 550955270, 3973757907, 28905779879, 211818655703, 1562190147576, 11586722064844, 86370917023313, 646728926117338, 4862143288139771, 36687265058186722, 277740810853563225, 2108990691307904601
OFFSET
0,2
COMMENTS
The g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;
here, p = x, q = x*A(x)^2, and r = x.
LINKS
FORMULA
G.f. A(x) satisfies the following relations.
(1) A(x) = Sum_{n>=0} x^n / (1 - x^(n+1)*A(x)^2).
(2) A(x) = Sum_{n>=0} x^n * A(x)^(2*n) / (1 - x^(n+1)).
(3) A(x) = Sum_{n>=0} x^(n^2+2*n) * A(x)^(2*n) * (1 - x^(2*n+2)*A(x)^2) / ((1 - x^(n+1))*(1 - x^(n+1)*A(x)^2)).
a(n) ~ c * d^n / n^(3/2), where d = 8.1095436670033855687235661331498800514999688916... and c = 0.2942244566611830970157343920557270211951238... - Vaclav Kotesovec, Jan 07 2021
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 27*x^3 + 144*x^4 + 848*x^5 + 5294*x^6 + 34385*x^7 + 229895*x^8 + 1571526*x^9 + 10933068*x^10 + ...
where
A(x) = 1/(1 - x*A(x)^2) + x/(1 - x^2*A(x)^2) + x^2/(1 - x^3*A(x)^2) + x^3/(1 - x^4*A(x)^2) + x^4/(1 - x^5*A(x)^2) + ...
also
A(x) = 1/(1 - x) + x*A(x)^2/(1 - x^2) + x^2*A(x)^4/(1 - x^3) + x^3*A(x)^6/(1 - x^4) + x^4*A(x)^8/(1 - x^5) + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) eq = FindRoot[{1/(1 - r*s^2) + (Log[1-r] + QPolyGamma[0, 2 + 2*Log[s]/Log[r], r])/ (r*s^2*Log[r]) == s, (2*QPolyGamma[1, 2 + 2*Log[s]/Log[r], r]) / (r*s^2*Log[r]^2) == 3*s - 2/(-1 + r*s^2)^2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*s^2*(-1 + r*s^2)*Log[r]^2 * (((-1 + r*s^2)*(1 + s^2*(-1 + (-1 + r)*s*(-1 + r*s^2))) + (-1 + r)*s^2*((-1 + s*(-1 + r*s^2)^2)*Log[r] + (-2 + 3*s*(-1 + r*s^2)^2)*Log[s]) - (-1 + r)*(-1 + r*s^2)^2 * Derivative[0, 0, 1][QPolyGamma][0, 2 + 2*Log[s]/Log[r], r])/(2*Pi*(-1 + r) * (r*s^2*(4 + s*(-9 + r*s*(4 + 9*s*(3 + r*s^2*(-3 + r*s^2)))))* Log[r]^3 - 4*(-1 + r*s^2)^3 * QPolyGamma[2, 2 + 2*Log[s]/Log[r], r])))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 01 2023 *)
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m / (1 - x^(m+1)*A^2 +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*A^(2*m) / (1 - x^(m+1) +x*O(x^n)) )); ; polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2021
STATUS
approved