OFFSET
0,2
COMMENTS
The g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;
here, p = x, q = x*A(x)^2, and r = x.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..350
FORMULA
G.f. A(x) satisfies the following relations.
(1) A(x) = Sum_{n>=0} x^n / (1 - x^(n+1)*A(x)^2).
(2) A(x) = Sum_{n>=0} x^n * A(x)^(2*n) / (1 - x^(n+1)).
(3) A(x) = Sum_{n>=0} x^(n^2+2*n) * A(x)^(2*n) * (1 - x^(2*n+2)*A(x)^2) / ((1 - x^(n+1))*(1 - x^(n+1)*A(x)^2)).
a(n) ~ c * d^n / n^(3/2), where d = 8.1095436670033855687235661331498800514999688916... and c = 0.2942244566611830970157343920557270211951238... - Vaclav Kotesovec, Jan 07 2021
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 27*x^3 + 144*x^4 + 848*x^5 + 5294*x^6 + 34385*x^7 + 229895*x^8 + 1571526*x^9 + 10933068*x^10 + ...
where
A(x) = 1/(1 - x*A(x)^2) + x/(1 - x^2*A(x)^2) + x^2/(1 - x^3*A(x)^2) + x^3/(1 - x^4*A(x)^2) + x^4/(1 - x^5*A(x)^2) + ...
also
A(x) = 1/(1 - x) + x*A(x)^2/(1 - x^2) + x^2*A(x)^4/(1 - x^3) + x^3*A(x)^6/(1 - x^4) + x^4*A(x)^8/(1 - x^5) + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) eq = FindRoot[{1/(1 - r*s^2) + (Log[1-r] + QPolyGamma[0, 2 + 2*Log[s]/Log[r], r])/ (r*s^2*Log[r]) == s, (2*QPolyGamma[1, 2 + 2*Log[s]/Log[r], r]) / (r*s^2*Log[r]^2) == 3*s - 2/(-1 + r*s^2)^2}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*s^2*(-1 + r*s^2)*Log[r]^2 * (((-1 + r*s^2)*(1 + s^2*(-1 + (-1 + r)*s*(-1 + r*s^2))) + (-1 + r)*s^2*((-1 + s*(-1 + r*s^2)^2)*Log[r] + (-2 + 3*s*(-1 + r*s^2)^2)*Log[s]) - (-1 + r)*(-1 + r*s^2)^2 * Derivative[0, 0, 1][QPolyGamma][0, 2 + 2*Log[s]/Log[r], r])/(2*Pi*(-1 + r) * (r*s^2*(4 + s*(-9 + r*s*(4 + 9*s*(3 + r*s^2*(-3 + r*s^2)))))* Log[r]^3 - 4*(-1 + r*s^2)^3 * QPolyGamma[2, 2 + 2*Log[s]/Log[r], r])))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 01 2023 *)
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m / (1 - x^(m+1)*A^2 +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*A^(2*m) / (1 - x^(m+1) +x*O(x^n)) )); ; polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2021
STATUS
approved