login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340333
G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/(1 - x^2*A(x)^n).
2
1, 1, 2, 2, 4, 7, 16, 38, 97, 257, 704, 1985, 5742, 17013, 51532, 159356, 502470, 1613880, 5275917, 17543426, 59307258, 203759160, 711246902, 2521876015, 9081377033, 33207738613, 123289411854, 464675856111, 1777656126662, 6901581699899, 27187917004378
OFFSET
0,3
COMMENTS
The g.f. A(x) of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;
here, p = x, q = x^2, and r = A(x).
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n / (1 - x^2*A(x)^n).
(2) A(x) = Sum_{n>=0} x^(2*n) / (1 - x*A(x)^n).
(3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(n^2) * (1 - x^3*A(x)^(2*n)) / ((1 - x*A(x)^n)*(1 - x^2*A(x)^n)).
EXAMPLE
G.f.: A(x) = = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 16*x^6 + 38*x^7 + 97*x^8 + 257*x^9 + 704*x^10 + 1985*x^11 + 5742*x^12 + ...
where
A(x) = 1/(1 - x^2) + x/(1 - x^2*A(x)) + x^2/(1 - x^2*A(x)^2) + x^3/(1 - x^2*A(x)^3) + x^4/(1 - x^2*A(x)^4) + ...
also
A(x) = 1/(1 - x) + x^2/(1 - x*A(x)) + x^4/(1 - x*A(x)^2) + x^6/(1 - x*A(x)^3) + x^8/(1 - x*A(x)^4) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m /(1 - x^2*A^m +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^(2*m) /(1 - x*A^m +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A340356.
Sequence in context: A014266 A032441 A238184 * A065844 A131199 A112059
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 11 2021
STATUS
approved