login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/(1 - x^2*A(x)^n).
2

%I #6 Feb 19 2021 11:54:20

%S 1,1,2,2,4,7,16,38,97,257,704,1985,5742,17013,51532,159356,502470,

%T 1613880,5275917,17543426,59307258,203759160,711246902,2521876015,

%U 9081377033,33207738613,123289411854,464675856111,1777656126662,6901581699899,27187917004378

%N G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/(1 - x^2*A(x)^n).

%C The g.f. A(x) of this sequence is motivated by the following identity:

%C Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;

%C here, p = x, q = x^2, and r = A(x).

%F G.f. A(x) satisfies:

%F (1) A(x) = Sum_{n>=0} x^n / (1 - x^2*A(x)^n).

%F (2) A(x) = Sum_{n>=0} x^(2*n) / (1 - x*A(x)^n).

%F (3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(n^2) * (1 - x^3*A(x)^(2*n)) / ((1 - x*A(x)^n)*(1 - x^2*A(x)^n)).

%e G.f.: A(x) = = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 16*x^6 + 38*x^7 + 97*x^8 + 257*x^9 + 704*x^10 + 1985*x^11 + 5742*x^12 + ...

%e where

%e A(x) = 1/(1 - x^2) + x/(1 - x^2*A(x)) + x^2/(1 - x^2*A(x)^2) + x^3/(1 - x^2*A(x)^3) + x^4/(1 - x^2*A(x)^4) + ...

%e also

%e A(x) = 1/(1 - x) + x^2/(1 - x*A(x)) + x^4/(1 - x*A(x)^2) + x^6/(1 - x*A(x)^3) + x^8/(1 - x*A(x)^4) + ...

%o (PARI) {a(n) = my(A=1); for(i=1,n, A = sum(m=0,n, x^m /(1 - x^2*A^m +x*O(x^n)) )); polcoeff(A,n)}

%o for(n=0,20,print1(a(n),", "))

%o (PARI) {a(n) = my(A=1); for(i=1,n, A = sum(m=0,n, x^(2*m) /(1 - x*A^m +x*O(x^n)) )); polcoeff(A,n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A340356.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 11 2021