login
A219708
Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 n X 2 array.
1
4, 13, 44, 129, 338, 813, 1822, 3840, 7665, 14578, 26557, 46556, 78861, 129536, 206973, 322561, 491490, 733707, 1075042, 1548523, 2195900, 3069399, 4233728, 5768358, 7770103, 10356024, 13666683, 17869774, 23164159, 29784338, 38005383
OFFSET
1,1
COMMENTS
Column 2 of A219714.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 + (1/2016)*n^7 + (7/2880)*n^6 + (5/144)*n^5 + (167/5760)*n^4 + (259/288)*n^3 + (4723/10080)*n^2 - (73/168)*n + 3.
Conjectures from Colin Barker, Jul 27 2018: (Start)
G.f.: x*(4 - 23*x + 71*x^2 - 135*x^3 + 173*x^4 - 147*x^5 + 79*x^6 - 24*x^7 + 3*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..0..0....0..0....0..0....2..2....0..0....2..2....0..0....1..1....0..0....1..1
..0..3....0..1....0..1....0..0....0..1....2..3....0..1....0..0....0..0....1..2
..3..3....2..3....3..3....0..2....1..3....3..3....0..0....0..3....0..2....1..1
CROSSREFS
Cf. A219714.
Sequence in context: A042767 A286175 A252831 * A345230 A117882 A257674
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 26 2012
STATUS
approved