login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345230
a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ..., x_n).
2
0, 1, 4, 13, 44, 140, 512, 1782, 6652, 24682, 93599, 354341, 1359470, 5210328, 20098886, 77621774, 300797854, 1167164438, 4539201401, 17674941735, 68933414989, 269143872226, 1052114789548, 4116808923486, 16124224585644, 63205911146740, 247961982954952
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * binomial(d+n-2, n-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 11 2021
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+n-1,n). - Seiichi Manyama, Sep 13 2024
MAPLE
a:= n-> coeff(series((1/(1-x))* add(numtheory[phi](k)
*x^k/(1-x^k)^n, k=1..n), x, n+1), x, n):
seq(a(n), n=0..26); # Alois P. Heinz, Jun 11 2021
MATHEMATICA
a[n_] := Sum[DivisorSum[k, EulerPhi[k/#] * Binomial[n + # - 2, n - 1] &], {k, 1, n}]; Array[a, 30, 0] (* Amiram Eldar, Jun 11 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(k/d)*binomial(d+n-2, n-1)));
(PARI) a(n) = sum(k=1, n, eulerphi(k)*binomial(n\k+n-1, n)); \\ Seiichi Manyama, Sep 13 2024
CROSSREFS
Main diagonal of A345229.
Sequence in context: A286175 A252831 A219708 * A117882 A257674 A027123
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 11 2021
STATUS
approved