OFFSET
1,4
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals)
Peter Kagey, Parity bitmap of first 2048 rows and 1024 columns. (Even and odd entries and represented by black and white pixels respectively.)
FORMULA
T(n,k) = Sum_{i=1..k-1} T(n+i, k-i) + Sum_{i=1..min(n,k)-1} T(n-i, k-i) + Sum_{i=1..n-1} T(n-i, k).
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6 7 8
---+------------------------------------------------------------
1| 1 1 6 35 237 1684 12557 96605
2| 1 4 21 139 978 7239 55423 435550
3| 2 10 65 451 3339 25559 200922 1611624
4| 4 25 179 1337 10325 81716 658918 5394051
5| 8 60 470 3725 30018 245220 2027447 16935981
6| 16 140 1189 9958 83518 703635 5961973 50811786
7| 32 320 2926 25802 224831 1951587 16938814 147261146
8| 64 720 7048 65241 589701 5269220 46826316 415175289
For example, the T(2,2) = 4 valid sequences of moves from (1,1) to (2,2) are:
(1,1) -> (2,1) -> (1,2) -> (2,2),
(1,1) -> (2,1) -> (3,1) -> (2,2),
(1,1) -> (2,2), and
(1,1) -> (3,1) -> (2,2).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Apr 12 2020
STATUS
approved