login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035002
Square array read by antidiagonals: T(m,n) = Sum_{k=1..m-1} T(m-k,n) + Sum_{k=1..n-1} T(m,n-k).
15
1, 1, 1, 2, 2, 2, 4, 5, 5, 4, 8, 12, 14, 12, 8, 16, 28, 37, 37, 28, 16, 32, 64, 94, 106, 94, 64, 32, 64, 144, 232, 289, 289, 232, 144, 64, 128, 320, 560, 760, 838, 760, 560, 320, 128, 256, 704, 1328, 1944, 2329, 2329, 1944, 1328, 704, 256, 512, 1536, 3104, 4864, 6266
OFFSET
1,4
COMMENTS
T(m,n) is the sum of all the entries above it plus the sum of all the entries to the left of it.
T(m,n) equals the number of ways to move a chess rook from the lower left corner to square (m,n), with the rook moving only up or right. - Francisco Santos, Oct 20 2005
T(m,n) is the number of nim games that start with two piles of stones of sizes m and n. - Martin J. Erickson (erickson(AT)truman.edu), Dec 05 2008
The same sequences arises from reading the following triangle by rows: Start with 1, then use a Pascal-like rule, where each new entry is the sum of all terms in the two diagonals that converge at that point. See example below. - J. M. Bergot, Jun 08 2013
T(n,k) is odd iff (n,k) = (1,1), k = n-1, or k = n+1. - Peter Kagey, Apr 20 2020
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened)
C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.
M. Erickson, S. Fernando, and K. Tran, Enumerating Rook and Queen Paths, Bulletin of the Institute for Combinatorics and Its Applications, Volume 60 (2010), 37-48.
FORMULA
G.f. T(n; x) for n-th row satisfies: T(n; x) = Sum_{k=1..n} (1+x^k)*T(n-k; x), T(0; x) = 1. - Vladeta Jovovic, Sep 03 2002
T(m+1,n+1) = 2*T(m+1,n) + 2*T(m,n+1) - 3*T(m,n); T(n,1) = T(1,n) = A011782(n). - Francisco Santos, Oct 20 2005
G.f.: ((x-1)*y-x+1)/((3*x-2)*y-2*x+1). - Vladimir Kruchinin, Apr 14 2015
T(n,m) = Sum_{i=0..m} C(m-1,m-i)*Sum_{k=0..n} C(k+i,i)*C(n-1,n-k). - Vladimir Kruchinin, Apr 14 2015
T(n,m) = T(m,n) for all n and m. - Michael Somos, Oct 04 2023
EXAMPLE
Table begins:
1 1 2 4 8 16 32 64 ...
1 2 5 12 28 64 144 320 ...
2 5 14 37 94 232 560 1328 ...
4 12 37 106 289 760 1944 4864 ...
Alternative construction as a triangle:
1
1 1
2 2 2
4 5 5 4
8 12 14 12 8
16 28 37 37 28 16
MAPLE
A035002 := proc(m, n)
option remember;
if n = 1 and m= 1 then
1;
elif m = 1 then
2^(n-2) ;
elif n = 1 then
2^(m-2) ;
else
add( procname(m-k, n), k=1..m-1) + add( procname(m, n-k), k=1..n-1) ;
end if;
end proc: # R. J. Mathar, Jun 06 2013
MATHEMATICA
T[n_, 1] = 2^(n-2); T[1, n_] = 2^(n-2); T[1, 1] = 1; T[m_, n_] := T[m, n] = Sum[T[m-k, n], {k, 1, m-1}] + Sum[T[m, n-k], {k, 1, n-1}]; Flatten[Table[T[m-n+1 , n], {m, 1, 11}, {n, 1, m}]] (* Jean-François Alcover, Nov 04 2011 *)
nMax = 11; T = (((x - 1)*y - x + 1)/((3*x - 2)*y - 2*x + 1) + O[x]^nMax // Normal // Expand) + O[y]^nMax // Normal // Expand // CoefficientList[#, {x, y}]&; Table[T[[n - k + 1, k]], {n, 1, nMax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 18 2018, after Vladimir Kruchinin *)
T[ n_, m_] := SeriesCoefficient[ (1 - x)*(1 - y)/( 1 - 2*x - 2*y + 3*x*y), {x, 0, n}, {y, 0, m}]; (* Michael Somos, Oct 05 2023 *)
PROG
(Maxima)
T(n, m):=sum(binomial(m-1, m-i)*sum(binomial(k+i, i)*binomial(n-1, n-k), k, 0, n), i, 0, m); /* Vladimir Kruchinin, Apr 14 2015 */
CROSSREFS
Cf. A035001, A051708, A025192 (antidiagonal sums).
Sequence in context: A308771 A007495 A122385 * A032578 A378905 A351976
KEYWORD
nonn,tabl,easy,nice
STATUS
approved