The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034999 Number of ways to cut a 2 X n rectangle into rectangles with integer sides. 6
 1, 2, 8, 34, 148, 650, 2864, 12634, 55756, 246098, 1086296, 4795090, 21166468, 93433178, 412433792, 1820570506, 8036386492, 35474325410, 156591247016, 691227204226, 3051224496244, 13468756547882, 59453967813584, 262442511046330, 1158477291582892 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is 1, 4, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... . - Philippe Deléham, Dec 10 2011 LINKS David A. Klarner and Spyros S. Magliveras, The number of tilings of a block with blocks, European Journal of Combinatorics 9 (1988), 317-330. Index entries for linear recurrences with constant coefficients, signature (6,-7). FORMULA a(n) = 1+3^(n-1) + Sum_{i=1..n-1} (1+3^(i-1)) a(n-i). a(n) = 6a(n - 1) - 7a(n - 2), a(n) = ((4 + sqrt(2)) (3 + sqrt(2))^n + (4 - sqrt(2)) (3 - sqrt(2))^n)/14. - N. Sato, May 10 2006 G.f.: (1-x)*(1-3*x)/(1-6*x+7*x^2). - Richard Stanley, Dec 09 2011 E.g.f.: (3 + exp(3*x)*(4*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/7. - Stefano Spezia, Feb 17 2022 a(n) = 2*A086351(n-1), n>0. - R. J. Mathar, Apr 07 2022 EXAMPLE For n=2 the a(2) = 8 ways to cut are: .___. .___. .___. .___. .___. .___. .___. .___. | | | | | |___| | |_| |_| | |___| |_|_| |_|_| |___| |_|_| |___| |_|_| |_|_| |_|_| |___| |_|_| . CROSSREFS Column 2 of A116694. - Alois P. Heinz, Dec 10 2012 Sequence in context: A014445 A113440 A296227 * A067336 A245090 A151829 Adjacent sequences: A034996 A034997 A034998 * A035000 A035001 A035002 KEYWORD nonn,easy AUTHOR EXTENSIONS a(0) added by Richard Stanley, Dec 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 15:21 EDT 2023. Contains 361668 sequences. (Running on oeis4.)