login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255318
Expansion of psi(x^3) * f(x^2, x^4) in powers of x where psi(), f() are Ramanujan theta functions.
8
1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 2, 2, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 2, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1
OFFSET
0,14
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x^3) * f(-x^6) / chi(-x^2) in powers of x where chi(), f() are Ramanujan theta functions.
Expansion of q^(-11/24) * eta(q^4) * eta(q^6)^4 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 0, 1, 1, 0, 0, -2, 0, 0, 1, 1, 0, -2, ...].
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^4 + x^5 + x^7 + x^9 + x^10 + x^11 + 2*x^13 + ...
G.f. = q^11 + q^59 + q^83 + q^107 + q^131 + q^179 + q^227 + q^251 + q^275 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[QPochhammer[-x^3]*QPochhammer[x^6]* QPochhammer[ -x^2, x^2], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^4 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
CROSSREFS
Sequence in context: A348040 A082858 A363164 * A249223 A115953 A225245
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 21 2015
STATUS
approved