login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257403 Multiplicative with a(2) = 1, a(2^e) = 0 if e>1, a(3^e) = 0^e, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8). 4
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,11
LINKS
FORMULA
Moebius transform is the period 288 sequence A257477.
a(3*n) = a(4*n) = a(8*n + 5) = a(8*n + 7) = 0. a(2*n + 1) = a(4*n + 2).
a(6*n + 1) = A257399(n). a(6*n + 5) = 2*A257402(n).
a(24*n + 1) = A257398(n). a(24*n + 11) = 2*A255318(n). a(24*n + 17) = 2*A255319(n). a(24*n + 19) = 2*A255317(n).
From Michael Somos, Apr 22 2015: (Start)
a(3*n + 2) = A256505(n) unless n == 5 (mod 8). a(3*n + 19) = 2 * A256574(n) unless n == 2 (mod 8).
Expansion of F(q) + F(q^2) + G(q) + G(q^2) in powers of q where F(q) = q * A257399(q^6) and G(q) = 2 * q^11 * A257402(q^6). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(6*sqrt(2)) = 0.370240... . - Amiram Eldar, Oct 17 2022
EXAMPLE
G.f. = x + x^2 + 2*x^11 + 2*x^17 + 2*x^19 + 2*x^22 + x^25 + 2*x^34 + ...
MATHEMATICA
a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ # == 2, Boole[#2 == 1], # == 3, 0, Mod[#, 8] < 4, #2 + 1, True, Mod[#2 + 1, 2]]& @@@ FactorInteger[n])];
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p+e==3, p%8 > 4, 1-e%2, e+1)))};
CROSSREFS
Sequence in context: A097798 A065205 A036272 * A326559 A083339 A216278
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Apr 21 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 22:52 EDT 2024. Contains 374323 sequences. (Running on oeis4.)