login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097798
Number of partitions of n into abundant numbers.
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 2, 0, 4, 0, 2, 0, 0, 0, 7, 0, 2, 0, 2, 0, 8, 0, 5, 0, 2, 0, 14, 0, 4, 0, 4, 0, 14, 0, 8, 0, 5, 0, 23, 0, 9, 0, 9, 0, 26, 0, 18, 0, 9, 0, 38, 0, 16, 0, 17, 0, 46, 0, 29, 0, 19, 0, 65, 0, 32, 0
OFFSET
0,25
COMMENTS
n = 977 = 945 + 32 is the first prime for which sequence obtains a nonzero value, as a(977) = a(32) = 1. 945 is the first term in A005231. - Antti Karttunen, Sep 06 2018
a(n) = 0 for 496 values of n, the largest of which is 991 (see A283550). - David A. Corneth, Sep 08 2018
LINKS
David A. Corneth, Table of n, a(n) for n = 0..10000 (a(1) through a(532) by Antti Karttunen)
David A. Corneth, PARI program
Eric Weisstein's World of Mathematics, Abundant Number
Eric Weisstein's World of Mathematics, Partition
MATHEMATICA
n = 100; d = Select[Range[n], DivisorSigma[1, #] > 2 # &]; CoefficientList[ Series[1/Product[1 - x^d[[i]], {i, 1, Length[d]} ], {x, 0, n}], x] (* Amiram Eldar, Aug 02 2019 *)
PROG
(PARI)
abundants_up_to_reversed(n) = { my(s = Set([])); for(k=1, n, if(sigma(k)>(2*k), s = setunion([k], s))); vecsort(s, , 4); };
partitions_into(n, parts, from=1) = if(!n, 1, my(k = #parts, s=0); for(i=from, k, if(parts[i]<=n, s += partitions_into(n-parts[i], parts, i))); (s));
A097798(n) = partitions_into(n, abundants_up_to_reversed(n)); \\ Antti Karttunen, Sep 06 2018
(PARI) \\ see Corneth link
(Magma) v:=[n:n in [1..100]| SumOfDivisors(n) gt 2*n]; [#RestrictedPartitions(n, Set(v)): n in [0..100]]; // Marius A. Burtea, Aug 02 2019
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 25 2004
EXTENSIONS
a(0) = 1 prepended by David A. Corneth, Sep 08 2018
STATUS
approved