login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256507
Triangle read by rows, giving in triangle A256946 the positions of n-th's row terms in row n+1.
2
1, 4, 7, 1, 2, 5, 7, 8, 11, 12, 14, 1, 2, 3, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 26, 29
OFFSET
1,2
COMMENTS
A256946(n+1,T(n,k),k) = A256946(n,k), k = 1..n*(n+2);
T(n,k) = k for k = 1..n;
T(n,n+1) = n + 3;
T(n,n*(n+2)) = (n+2)^2 - 2.
LINKS
EXAMPLE
. n | T(n,*) | A256946(n,*)
. ---+--------------------+--------------------------------------
. 1 | 1,4,7 | [1, 2, 3]
. 2 | 1,2,5,7,8,11,12,14 | [1,4, 5, 2,6, 7,3, 8]
. 3 | 1,2,3,6,7,9,11,... | [1,4,9,10,5,11,2,6,12,13,7,3,14,8,15] .
MATHEMATICA
row[n_] := (* row of A256946 *) row[n] = SortBy[Range[n(n+2)], If[IntegerQ[ Sqrt[#]], 0, N[FractionalPart[Sqrt[#]]]]&];
T[n_, k_] := FirstPosition[row[n+1], row[n][[k]]][[1]];
Table[T[n, k], {n, 1, 5}, {k, 1, n(n+2)}] // Flatten (* Jean-François Alcover, Sep 17 2019 *)
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a256507 n k = a256507_tabf !! (n-1) !! (k-1)
a256507_row n = a256507_tabf !! (n-1)
a256507_tabf = zipWith (\us vs ->
map ((+ 1) . fromJust . (`elemIndex` vs)) us)
a256946_tabf $ tail a256946_tabf
CROSSREFS
Cf. A005563 (row lengths), A256946.
Sequence in context: A254338 A197723 A186191 * A123734 A011519 A131594
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Apr 22 2015
STATUS
approved