login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256506
a(n) = (2*n+3)*a(n-1) + a(n-2), a(0)=0, a(1)=1.
1
0, 1, 7, 64, 711, 9307, 140316, 2394679, 45639217, 960818236, 22144458645, 554572284361, 14995596136392, 435426860239729, 13513228263567991, 446371959557983432, 15636531812792988111, 578998049032898543539, 22596560444095836186132, 927037976256962182174951
OFFSET
0,3
LINKS
FORMULA
a(n) = i*(BesselK[5/2,1]*BesselI[n+5/2,-1] - BesselI[5/2,-1]*BesselK[n+5/2,1]) for n >= 0.
a(n) = (2/Pi)*(i_{2}^{(1)}(-1)*k_{n+2}(1) - k_{2}(1)*i_{n+2}^{(1)}(-1)) where i_{n}^{(1)}(x) and k_{n}(x) are the modified spherical Bessel functions, n >= 0.
E.g.f.: Sum_{n>=0} a(n-2) t^n/n! = (1/(2*e*sqrt(1-2t)))*((e^2 - 7)*cosh(sqrt(1-2t)) - (e^2 + 7)*sinh(sqrt(1-2t))).
a(n) = (exp(2)-7)*BesselK(5/2 + n, 1)/(exp(1)*sqrt(2*Pi)) - 7*(-1)^n*sqrt(Pi/2) * BesselI(5/2 + n, 1)/exp(1). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (exp(2)-7) * 2^(n+3/2) * n^(n+2) / exp(n+1). - Vaclav Kotesovec, Jul 22 2015
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n+3)a[n-1]}, a, {n, 20}]
nxt[{n_, a_, b_}]:={n+1, b, (2n+5)*b+a}; NestList[nxt, {1, 0, 1}, 20][[All, 2]] (* Harvey P. Dale, Jan 07 2021 *)
PROG
(Magma) [n le 2 select n-1 else (2*n+1)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2016
CROSSREFS
Sequence in context: A213515 A349333 A293470 * A008787 A261500 A173516
KEYWORD
easy,nonn
AUTHOR
G. C. Greubel, Apr 22 2015
EXTENSIONS
More terms from Vaclav Kotesovec, Jul 22 2015
STATUS
approved