OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..400
FORMULA
a(n) = i*(BesselK[5/2,1]*BesselI[n+5/2,-1] - BesselI[5/2,-1]*BesselK[n+5/2,1]) for n >= 0.
a(n) = (2/Pi)*(i_{2}^{(1)}(-1)*k_{n+2}(1) - k_{2}(1)*i_{n+2}^{(1)}(-1)) where i_{n}^{(1)}(x) and k_{n}(x) are the modified spherical Bessel functions, n >= 0.
E.g.f.: Sum_{n>=0} a(n-2) t^n/n! = (1/(2*e*sqrt(1-2t)))*((e^2 - 7)*cosh(sqrt(1-2t)) - (e^2 + 7)*sinh(sqrt(1-2t))).
a(n) = (exp(2)-7)*BesselK(5/2 + n, 1)/(exp(1)*sqrt(2*Pi)) - 7*(-1)^n*sqrt(Pi/2) * BesselI(5/2 + n, 1)/exp(1). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (exp(2)-7) * 2^(n+3/2) * n^(n+2) / exp(n+1). - Vaclav Kotesovec, Jul 22 2015
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n+3)a[n-1]}, a, {n, 20}]
nxt[{n_, a_, b_}]:={n+1, b, (2n+5)*b+a}; NestList[nxt, {1, 0, 1}, 20][[All, 2]] (* Harvey P. Dale, Jan 07 2021 *)
PROG
(Magma) [n le 2 select n-1 else (2*n+1)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, May 02 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
G. C. Greubel, Apr 22 2015
EXTENSIONS
More terms from Vaclav Kotesovec, Jul 22 2015
STATUS
approved