|
|
A036791
|
|
Continued fraction for (2/Pi)*Integral_{x=0..Pi} sin(x)/x.
|
|
2
|
|
|
1, 5, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 9, 24, 1, 3, 1, 7, 1, 5, 1, 2, 2, 3, 1, 2, 2, 1, 8, 11, 4, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 23, 1, 3, 3, 1, 6, 2, 9, 1, 3, 2, 17, 1, 5, 3, 1, 8, 1, 1, 1, 1, 1, 4, 1, 5, 1, 2, 1, 38, 1, 5, 5, 2, 6, 2, 73, 1, 1, 1, 194, 27, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Continued fraction expansion for Integrate[Binomial[1,x], {x,0,1}]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006
Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... - Harry J. Smith, Apr 28 2009
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..20000
G. Xiao, Contfrac
Index entries for continued fractions for constants
|
|
EXAMPLE
|
1.178979744472167270232028845... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + ...)))). - Harry J. Smith, Apr 28 2009
|
|
MATHEMATICA
|
ContinuedFraction[N[Integrate[Binomial[1, x], {x, 0, 1}], 120]] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 *)
|
|
PROG
|
(PARI) { allocatemem(932245000); default(realprecision, 21000); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; x=contfrac(x); for (n=1, 20000, write("b036791.txt", n, " ", x[n])); } \\ Harry J. Smith, Apr 28 2009
|
|
CROSSREFS
|
Cf. A036793.
Sequence in context: A320410 A011396 A256503 * A340513 A180136 A346916
Adjacent sequences: A036788 A036789 A036790 * A036792 A036793 A036794
|
|
KEYWORD
|
nonn,cofr
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|