login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036791
Continued fraction for (2/Pi)*Integral_{x=0..Pi} sin(x)/x.
2
1, 5, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 1, 1, 9, 24, 1, 3, 1, 7, 1, 5, 1, 2, 2, 3, 1, 2, 2, 1, 8, 11, 4, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 23, 1, 3, 3, 1, 6, 2, 9, 1, 3, 2, 17, 1, 5, 3, 1, 8, 1, 1, 1, 1, 1, 4, 1, 5, 1, 2, 1, 38, 1, 5, 5, 2, 6, 2, 73, 1, 1, 1, 194, 27, 1, 1
OFFSET
0,2
COMMENTS
Continued fraction expansion for Integrate[Binomial[1,x], {x,0,1}]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006
Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... - Harry J. Smith, Apr 28 2009
EXAMPLE
1.178979744472167270232028845... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + ...)))). - Harry J. Smith, Apr 28 2009
MATHEMATICA
ContinuedFraction[N[Integrate[Binomial[1, x], {x, 0, 1}], 120]] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; x=contfrac(x); for (n=1, 20000, write("b036791.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 28 2009
CROSSREFS
Cf. A036793 (decimal expansion).
Sequence in context: A320410 A011396 A256503 * A340513 A180136 A346916
KEYWORD
nonn,cofr
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 03 2024
STATUS
approved