%I #17 Aug 03 2024 13:25:14
%S 1,5,1,1,2,2,1,2,1,2,1,1,6,1,1,1,1,1,9,24,1,3,1,7,1,5,1,2,2,3,1,2,2,1,
%T 8,11,4,2,2,2,1,2,2,1,1,2,1,23,1,3,3,1,6,2,9,1,3,2,17,1,5,3,1,8,1,1,1,
%U 1,1,4,1,5,1,2,1,38,1,5,5,2,6,2,73,1,1,1,194,27,1,1
%N Continued fraction for (2/Pi)*Integral_{x=0..Pi} sin(x)/x.
%C Continued fraction expansion for Integrate[Binomial[1,x], {x,0,1}]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006
%C Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... - _Harry J. Smith_, Apr 28 2009
%H Harry J. Smith, <a href="/A036791/b036791.txt">Table of n, a(n) for n = 0..19999</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 1.178979744472167270232028845... = 1 + 1/(5 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 28 2009
%t ContinuedFraction[N[Integrate[Binomial[1, x], {x, 0, 1}], 120]] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2006 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; x=contfrac(x); for (n=1, 20000, write("b036791.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 28 2009
%Y Cf. A036793 (decimal expansion).
%K nonn,cofr
%O 0,2
%A _N. J. A. Sloane_
%E Offset changed by _Andrew Howroyd_, Aug 03 2024