login
A180136
Smallest k such that k*12^n is a sum of two successive primes.
9
5, 1, 1, 2, 18, 8, 13, 6, 2, 11, 11, 39, 20, 12, 1, 8, 9, 31, 182, 24, 2, 126, 128, 66, 9, 86, 146, 43, 170, 49, 155, 119, 115, 21, 77, 18, 60, 5, 119, 81, 27, 45, 81, 23, 28, 134, 14, 262, 131, 86, 55, 7, 549, 81, 199, 107, 100, 184, 85, 80, 32, 43, 118, 299, 43, 224, 187
OFFSET
0,1
COMMENTS
If a(n) == 0 (mod 12), then a(n+1) = a(n)/12.
Records: 5, 18, 39, 182, 262, 549, 752, 811, 1456, ..., .
Corresponding primes are twin primes for n = 0, 1, 2, 5, 15, 26, 28, 55, 72, ..., .
LINKS
MATHEMATICA
f[n_] := Block[{k = 1, j = 12^n/2}, While[ h = k*j; PrimeQ@h || NextPrime[h, -1] + NextPrime@h != 2 h, k++ ]; k]; Array[f, 80, 0]
PROG
(Python)
from sympy import nextprime, prevprime
def sum2succ(n): return n == prevprime(n//2) + nextprime(n//2)
def a(n):
if n == 0: return 5
k, pow12 = 1, 12**n
while not sum2succ(k*pow12): k += 1
return k
print([a(n) for n in range(67)]) # Michael S. Branicky, May 01 2021
KEYWORD
nonn
AUTHOR
STATUS
approved