login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180138
Table, t, read by antidiagonals: t(b,e) is the smallest k such that k*b^e is a sum of two successive primes.
9
5, 5, 4, 5, 4, 2, 5, 2, 2, 1, 5, 1, 7, 6, 7, 5, 2, 4, 2, 2, 4, 5, 6, 1, 10, 9, 10, 2, 5, 1, 18, 1, 2, 8, 20, 1, 5, 2, 2, 10, 4, 8, 2, 26, 9, 5, 3, 2, 15, 30, 12, 12, 25, 22, 15, 5, 18, 1, 20, 2, 18, 2, 12, 11, 10, 8, 5, 1, 6, 6, 22, 19, 4, 1, 36, 6, 16, 4, 5, 4, 1, 24, 6, 16, 6, 28, 4, 12, 10, 8, 2
OFFSET
1,1
COMMENTS
1st row: A180130, 2nd row: A180131, 3rd row: bisection of A180130, 4th row: A180132, 5th row: A180133, 6th row: A180134, 7th row: trisection of A180130, 8th row: bisection of A180131, 9th row: A179975, 10th row: A180135, 11th row: A180136 and 12th row: A180137; 1st column: A010716.
The k-th term == 1 10, 12, 24, 30, 32, 36, 58, 68, 74, 81, 105, 155, 278, 303, 315, 331, 419, 437, 439, 632, 638, 752, 857, 863, 906, 924, 950, ..., .
Increasing terms: {5, 6, 10, 20, 26, 72, 104, 118, 306, 320, 348, 572, 824, 828, 972, 1054, 1110, 1540, 5, 7, 10, 18, 20, 26, 30, 36, 52, 66, 72, 120, 132, 168, 266, 574, 640, 776, 1600, 1938, 2616, 3124, 3306, 4440, ...,
which occurs at the k-th term: 5, 6, 10, 20, 26, 72, 104, 118, 306, 320, 348, 572, 824, 828, 972, 1054, 1110, 1540, 5, 7, 10, 18, 20, 26, 30, 36, 52, 66, 72, 120, 132, 168, 266, 574, 640, 776, 1600, 1938, 2616, 3124, 3306, 4440, 1, 13, 25, 31, 35, 44, 50, 75, 114, 117, 119, 166, 187, 267, 289, 615, 1416, 1575, 2069, 3463, 4840, 5968, 7709, 9695, ..., .
Increasing terms by antidiagonals: t(2,0)=5, t(4,2)=t(2,4)=7, t(5,3)=t(3,5)=10, t(3,6)=20, t(3,7)=26, t(7,4)=30, t(5,8)=36, t(3,13)=72, t(7,12)=120, t(5,15)=132, t(11,13)=168, t(13,12)=266, t(17,19)=574, t(17,37)=640, t(23,34)=776, t(13,52)=1600, t(25,59)=1938, t(13,86)=2616. t(29,81)=3124, t(43,82)=3306, t(37,103)=4440..., .
Corresponding primes are twin primes for t(18,2), t(24,2), t(54,6), t(60,5), t(72,6), t(102,8), t(114,1), t=(126,1), ..., .
LINKS
EXAMPLE
.\e..0...1...2...3...4...5...6...7...8...9..10..11..12..13..14..15..16..17..18..19..20..21..22..23..24..25
.b\
.2...5...4...2...1...7...4...2...1...9..15...8...4...2...1..25..19..11..12...6...3..10...5..35..33..52..26
.3...5...4...2...6...2..10..20..26..22..10..16...8...8..72..24...8..18...6...2...6...2..10..20..20..22..20
.4...5...2...7...2...9...8...2..25..11...6..10..35..52..13..14..15..19..47..13..84..21..35...9..23..49..52
.5...5...1...4..10...2...8..12..12..36..12..28..66..30...6..18.132..36.108..34..14..48..60..12..22.150..30
.6...5...2...1...1...4..12...2...1...4...3...5...8...7..34...8..11..33..26..13...9..13..90..15..40..30...5
.7...5...6..18..10..30..18...4..28...4..30..30..60.120..38..12...6..52.120..70..10.102..60..70..10.186.174
.8...5...1...2..15...2..19...6...5..52..28..15..45..13..42..35..46..49..26..24...3..18..15..21..62..32...4
.9...5...2...2..20..22..16...8..24..18...2...2..20..22..52.104..84..38.102.100..30.192..46..22..84.176..30
10...5...3...1...6...6...6..14...6...9..19..21..21..42..93..21...6..11...2..12.111..37..39..63..38..42..24
11...5..18...6..24...6..32..40..26..20..94..50..26..10.168..30..18.196.126..70.166..30..54.130..26..50..10
12...5...1...1...2..18...8..13...6...2..11..11..39..20..12...1...8...9..31.182..24...2.126.128..66...9..86
13...5...4..24...4...8..22..40...4..14..16..28..10.266..40..20..46.112.156..12..20.228..26...2.220..60.140
...
MATHEMATICA
t[b_, e_] := Block[{k = 1, hnp = b^e/2}, While[ h = k*hnp; PrimeQ@h || NextPrime[h, -1] + NextPrime@h != 2 h, k++ ]; k]; Table[ t[b - e, e], {b, 2, 14}, {e, 0, b - 2}] // Flatten
(* to find twins other than 2&3 *) gQ[b_, e_, k_] := Block[{h = k*b^e/2}, NextPrime@h - NextPrime[h, -1] < 3 ]; Do[ If[ gQ[b - e, e, k], Print[{b - e, e}]], {b, 2, 143}, {e, 0, b - 2}]
PROG
(Python)
from sympy import isprime, nextprime, prevprime
def sum2succ(n):
if n <= 5: return n == 5
return not isprime(n//2) and n == prevprime(n//2) + nextprime(n//2)
def T(b, e):
k, powb = 1, b**e
while not sum2succ(k*powb): k += 1
return k
def atodiag(maxd): # maxd antidiagonals
return [T(b-e, e) for b in range(2, maxd+2) for e in range(b-1)]
print(atodiag(13)) # Michael S. Branicky, May 05 2021
KEYWORD
base,nonn,tabl
AUTHOR
STATUS
approved