login
A214249
Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k} \ {0}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 5, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 14, 7, 1, 1, 1, 1, 3, 4, 7, 14, 20, 18, 10, 1, 1, 1, 1, 3, 4, 7, 14, 21, 30, 36, 9, 1, 1, 1, 1, 3, 4, 7, 14, 23, 36, 50, 49, 14, 1
OFFSET
0,14
LINKS
EXAMPLE
A(3,0) = 1: [3].
A(4,1) = 2: [4], [1,2,1].
A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1].
A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 3, 3, 3, 3, 3, 3, ...
1, 2, 4, 4, 4, 4, 4, 4, ...
1, 4, 5, 7, 7, 7, 7, 7, ...
1, 5, 11, 12, 14, 14, 14, 14, ...
1, 5, 14, 20, 21, 23, 23, 23, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0,
`if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k} minus{0})))
end:
A:= (n, k)-> `if`(n=0, 1, add(b(n, j, min(n, k)), j=1..n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n<1 || i<1, 0, If[n == i, 1, Sum[b[n-i, i+j, k], {j, Range[-k, -1] ~Join~ Range[k]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, Min[n, k]], {j, 1, n}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A000012, A173258, A214256.
Main diagonal gives: A003242.
Sequence in context: A330827 A010276 A214268 * A271714 A049639 A046555
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 08 2012
STATUS
approved