The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214258 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k; triangle T(n,k), n>=1, 0<=k
 1, 2, 0, 2, 2, 0, 3, 3, 2, 0, 2, 9, 3, 2, 0, 4, 11, 12, 3, 2, 0, 2, 25, 20, 12, 3, 2, 0, 4, 35, 49, 23, 12, 3, 2, 0, 3, 60, 95, 58, 23, 12, 3, 2, 0, 4, 96, 188, 123, 61, 23, 12, 3, 2, 0, 2, 157, 366, 266, 132, 61, 23, 12, 3, 2, 0, 6, 241, 714, 557, 294, 135, 61, 23, 12, 3, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For fixed k > 0, limit_{n->infinity} T(n,k)^(1/n) = d, where d > 1 is the real root of the equation d^(k+2) - 2*d^(k+1) + 1 = 0. - Vaclav Kotesovec, Jan 07 2019 LINKS Alois P. Heinz, Rows n = 1..150, flattened FORMULA T(n,0) = A214257(n,0), T(n,k) = A214257(n,k)-A214257(n,k-1) for k>0. EXAMPLE T(4,0) = 3: [4], [2,2], [1,1,1,1]. T(5,1) = 9: [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2]. T(5,2) = 3: [3,1,1], [1,3,1], [1,1,3]. T(5,3) = 2: [4,1], [1,4]. T(6,2) = 12: [4,2], [3,2,1], [3,1,2], [3,1,1,1], [2,4], [2,3,1], [2,1,3], [1,3,2], [1,3,1,1], [1,2,3], [1,1,3,1], [1,1,1,3]. Triangle T(n,k) begins:   1;   2,  0;   2,  2,  0;   3,  3,  2,  0;   2,  9,  3,  2,  0;   4, 11, 12,  3,  2,  0;   2, 25, 20, 12,  3,  2,  0;   4, 35, 49, 23, 12,  3,  2,  0; MAPLE b:= proc(n, k, s, t) option remember;       `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k,        min(s, j), max(t, j)), j=max(1, t-k+1)..s+k-1)))     end: A:= proc(n, k) option remember;       `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n))     end: T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n-1), n=1..15); # second Maple program: b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s),       add(b(n-j, min(s, j), max(t, j)), j=1..n))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n\$2, 0)): seq(T(n), n=1..15);  # Alois P. Heinz, Jan 05 2019 MATHEMATICA b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n-j, k, Min[s, j], Max[t, j]], {j, Max[1, t-k+1], s+k-1}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n-j, k+1, j, j], {j, 1, n}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *) CROSSREFS Columns k=0-10 give: A000005, A214259, A323119, A323120, A323121, A323122, A323123, A323124, A323125, A323126, A323127. Row sums give: A011782. T(2n,n) gives A323111. Cf. A214246, A214247, A214248, A214249, A214257, A214268, A214269. Sequence in context: A208955 A121363 A346274 * A138021 A166065 A252706 Adjacent sequences:  A214255 A214256 A214257 * A214259 A214260 A214261 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jul 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 12:47 EDT 2022. Contains 355148 sequences. (Running on oeis4.)