login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214258 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k; triangle T(n,k), n>=1, 0<=k<n, read by rows. 19
1, 2, 0, 2, 2, 0, 3, 3, 2, 0, 2, 9, 3, 2, 0, 4, 11, 12, 3, 2, 0, 2, 25, 20, 12, 3, 2, 0, 4, 35, 49, 23, 12, 3, 2, 0, 3, 60, 95, 58, 23, 12, 3, 2, 0, 4, 96, 188, 123, 61, 23, 12, 3, 2, 0, 2, 157, 366, 266, 132, 61, 23, 12, 3, 2, 0, 6, 241, 714, 557, 294, 135, 61, 23, 12, 3, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For fixed k > 0, limit_{n->infinity} T(n,k)^(1/n) = d, where d > 1 is the real root of the equation d^(k+2) - 2*d^(k+1) + 1 = 0. - Vaclav Kotesovec, Jan 07 2019

LINKS

Alois P. Heinz, Rows n = 1..150, flattened

FORMULA

T(n,0) = A214257(n,0), T(n,k) = A214257(n,k)-A214257(n,k-1) for k>0.

EXAMPLE

T(4,0) = 3: [4], [2,2], [1,1,1,1].

T(5,1) = 9: [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2].

T(5,2) = 3: [3,1,1], [1,3,1], [1,1,3].

T(5,3) = 2: [4,1], [1,4].

T(6,2) = 12: [4,2], [3,2,1], [3,1,2], [3,1,1,1], [2,4], [2,3,1], [2,1,3], [1,3,2], [1,3,1,1], [1,2,3], [1,1,3,1], [1,1,1,3].

Triangle T(n,k) begins:

  1;

  2,  0;

  2,  2,  0;

  3,  3,  2,  0;

  2,  9,  3,  2,  0;

  4, 11, 12,  3,  2,  0;

  2, 25, 20, 12,  3,  2,  0;

  4, 35, 49, 23, 12,  3,  2,  0;

MAPLE

b:= proc(n, k, s, t) option remember;

      `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k,

       min(s, j), max(t, j)), j=max(1, t-k+1)..s+k-1)))

    end:

A:= proc(n, k) option remember;

      `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n))

    end:

T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):

seq(seq(T(n, k), k=0..n-1), n=1..15);

# second Maple program:

b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s),

      add(b(n-j, min(s, j), max(t, j)), j=1..n))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2, 0)):

seq(T(n), n=1..15);  # Alois P. Heinz, Jan 05 2019

MATHEMATICA

b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n-j, k, Min[s, j], Max[t, j]], {j, Max[1, t-k+1], s+k-1}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n-j, k+1, j, j], {j, 1, n}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-Fran├žois Alcover, Jan 15 2014, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000005, A214259, A323119, A323120, A323121, A323122, A323123, A323124, A323125, A323126, A323127.

Row sums give: A011782.

T(2n,n) gives A323111.

Cf. A214246, A214247, A214248, A214249, A214257, A214268, A214269.

Sequence in context: A208955 A121363 A346274 * A138021 A166065 A252706

Adjacent sequences:  A214255 A214256 A214257 * A214259 A214260 A214261

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 7 12:47 EDT 2022. Contains 355148 sequences. (Running on oeis4.)