login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214260
First differences of A052980.
2
0, 1, 3, 6, 13, 29, 64, 141, 311, 686, 1513, 3337, 7360, 16233, 35803, 78966, 174165, 384133, 847232, 1868629, 4121391, 9090014, 20048657, 44218705, 97527424, 215103505, 474425715, 1046378854, 2307861213
OFFSET
0,3
COMMENTS
1 -> 123, 2 -> 12, 3 -> 2, starting with 1 gives the sequence: 1, 123, 123122, 1231221231212, ... the n-th term has a(n) digits.
Ternary words of length n-1 with subwords (0,1), (1,1) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
FORMULA
Recurrence: a(0) = 0, a(1) = 1, a(2) = 3, a(n+1) = 2*a(n) + a(n-2).
G.f.: x*(1+x)/(1-2*x-x^3).
a(n) = A052980(n) + A052980(n-2) = A052980(n+1) - A052980(n).
a(n+1) = A078061(n)*(-1)^n.
a(0) = 0, a(n) = A008998(n-1) + A008998(n-2) for n>0.
a(n+1) = Sum_{k=0..n} C(n-k, floor(k/2))*2^(n-k-floor(k/2)).
MATHEMATICA
LinearRecurrence[{2, 0, 1}, {0, 1, 3}, 30] (* Harvey P. Dale, Sep 04 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jul 22 2012
STATUS
approved