login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214256
Number of compositions of n where differences between neighboring parts are in {-2,-1,1,2}.
2
1, 1, 1, 3, 4, 5, 11, 14, 18, 36, 49, 66, 118, 169, 238, 401, 586, 846, 1371, 2042, 2998, 4731, 7114, 10566, 16419, 24809, 37118, 57139, 86558, 130151, 199193, 302109, 455737, 695084, 1054761, 1594484, 2426813, 3683310, 5575665, 8475607, 12864385, 19490762
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.517398641547133636808941933115508174163721854365273284016518..., c = 0.733002948674062952076493110095119568735789170592785923762247... . - Vaclav Kotesovec, Sep 02 2014
EXAMPLE
a(4) = 4: [4], [3,1], [1,3], [1,2,1].
a(5) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1].
a(6) = 11: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,3,2], [1,2,3], [1,2,1,2].
MAPLE
b:= proc(n, i) option remember; `if`(n<1 or i<1, 0,
`if`(n=i, 1, add(b(n-i, i+j), j=[-2, -1, 1, 2])))
end:
a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):
seq(a(n), n=0..70);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n-i, i+j], {j, {-2, -1, 1, 2}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 06 2014, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A214249.
Sequence in context: A006288 A047598 A283773 * A067532 A276470 A152911
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 08 2012
STATUS
approved