login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047598
Numbers that are congruent to {3, 4, 5} mod 8.
1
3, 4, 5, 11, 12, 13, 19, 20, 21, 27, 28, 29, 35, 36, 37, 43, 44, 45, 51, 52, 53, 59, 60, 61, 67, 68, 69, 75, 76, 77, 83, 84, 85, 91, 92, 93, 99, 100, 101, 107, 108, 109, 115, 116, 117, 123, 124, 125, 131, 132, 133, 139, 140, 141, 147, 148, 149, 155, 156, 157
OFFSET
1,1
FORMULA
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x*(3+x+x^2+3*x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-12-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-4, a(3k-2) = 8k-5. (End)
MAPLE
A047598:=n->(24*n-12-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047598(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{3, 4, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {3, 4, 5, 11}, 80] (* Harvey P. Dale, May 20 2021 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3..5]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A349005 A128920 A006288 * A283773 A214256 A067532
KEYWORD
nonn,easy
STATUS
approved