login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283773 Numbers k such that U(k) = 1 mod 3, where U = A001950 = upper Wythoff sequence. 3
3, 4, 5, 11, 12, 13, 19, 20, 27, 28, 35, 36, 42, 43, 44, 50, 51, 52, 58, 59, 60, 66, 67, 68, 74, 75, 82, 83, 90, 91, 97, 98, 99, 105, 106, 107, 113, 114, 115, 121, 122, 123, 129, 130, 137, 138, 144, 145, 146, 152, 153, 154, 160, 161, 162, 168, 169, 170, 176 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequences A283772, A283773, A283774 partition the positive integers.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

FORMULA

a(n+1) - a(n) is in {1,6,7} for every n.

MATHEMATICA

r = GoldenRatio^2; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 3];

Flatten[Position[u, 0]]  (* A283772 *)

Flatten[Position[u, 1]]  (* A283773 *)

Flatten[Position[u, 2]]  (* A283774 *)

PROG

(PARI) r = (3 + sqrt(5))/2;

for(n=1, 351, if(floor(n*r)%3==1, print1(n, ", "))) \\ Indranil Ghosh, Mar 19 2017

(Python)

import math

from sympy import sqrt

r = (3 + sqrt(5))/2

[n for n in range(1, 351) if int(math.floor(n*r))%3==1] # Indranil Ghosh, Mar 19 2017

CROSSREFS

Cf. A000201, A001622, A283772, A283774.

Sequence in context: A128920 A006288 A047598 * A214256 A067532 A276470

Adjacent sequences:  A283770 A283771 A283772 * A283774 A283775 A283776

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 02:34 EDT 2021. Contains 346457 sequences. (Running on oeis4.)