login
A283772
Numbers k such that U(k) = 0 mod 3, where U = A001950 = upper Wythoff sequence.
3
6, 7, 14, 15, 21, 22, 23, 29, 30, 31, 37, 38, 39, 45, 46, 47, 53, 54, 61, 62, 69, 70, 76, 77, 78, 84, 85, 86, 92, 93, 94, 100, 101, 102, 108, 109, 116, 117, 124, 125, 131, 132, 133, 139, 140, 141, 147, 148, 149, 155, 156, 157, 163, 164, 171, 172, 179, 180
OFFSET
1,1
COMMENTS
The sequences A283772, A283773, A283774 partition the positive integers.
LINKS
FORMULA
a(n+1) - a(n) is in {1,6,7} for every n.
MATHEMATICA
r = GoldenRatio^2; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 3];
Flatten[Position[u, 0]] (* A283772 *)
Flatten[Position[u, 1]] (* A283773 *)
Flatten[Position[u, 2]] (* A283774 *)
PROG
(PARI) r = (3 + sqrt(5))/2;
for(n=1, 351, if(floor(n*r)%3==0, print1(n, ", "))) \\ Indranil Ghosh, Mar 19 2017
(Python)
import math
from sympy import sqrt
r = (3 + sqrt(5))/2
[n for n in range(1, 351) if int(math.floor(n*r))%3==0] # Indranil Ghosh, Mar 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 18 2017
STATUS
approved