login
A283769
Numbers k such that L(k) = 0 mod 3, where L = A000201 = lower Wythoff sequence.
3
2, 4, 6, 8, 13, 15, 17, 19, 21, 26, 28, 30, 32, 39, 41, 43, 45, 52, 54, 56, 58, 65, 67, 69, 71, 78, 80, 82, 84, 89, 91, 93, 95, 97, 102, 104, 106, 108, 110, 115, 117, 119, 121, 128, 130, 132, 134, 141, 143, 145, 147, 154, 156, 158, 160, 167, 169, 171, 173
OFFSET
1,1
COMMENTS
The sequences A283769, A283770, A283771 partition the positive integers.
LINKS
FORMULA
a(n+1) - a(n) is in {2,5,7} for every n.
MATHEMATICA
r = GoldenRatio; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 3];
Flatten[Position[u, 0]] (* A283769 *)
Flatten[Position[u, 1]] (* A283770 *)
Flatten[Position[u, 2]] (* A283771 *)
PROG
(PARI) r = (1 + sqrt(5))/2;
for(n=1, 351, if(floor(n*r)%3==0, print1(n, ", "))) \\ Indranil Ghosh, Mar 19 2017
(Python)
import math
from sympy import sqrt
r = (1 + sqrt(5))/2
[n for n in range(1, 351) if int(math.floor(n*r)) % 3 == 0] # Indranil Ghosh, Mar 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 18 2017
STATUS
approved