login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that U(k) = 0 mod 3, where U = A001950 = upper Wythoff sequence.
3

%I #11 Dec 06 2019 16:24:15

%S 6,7,14,15,21,22,23,29,30,31,37,38,39,45,46,47,53,54,61,62,69,70,76,

%T 77,78,84,85,86,92,93,94,100,101,102,108,109,116,117,124,125,131,132,

%U 133,139,140,141,147,148,149,155,156,157,163,164,171,172,179,180

%N Numbers k such that U(k) = 0 mod 3, where U = A001950 = upper Wythoff sequence.

%C The sequences A283772, A283773, A283774 partition the positive integers.

%H Clark Kimberling, <a href="/A283772/b283772.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n+1) - a(n) is in {1,6,7} for every n.

%t r = GoldenRatio^2; z = 350; t = Table[Floor[n*r], {n, 1, z}]; u = Mod[t, 3];

%t Flatten[Position[u, 0]] (* A283772 *)

%t Flatten[Position[u, 1]] (* A283773 *)

%t Flatten[Position[u, 2]] (* A283774 *)

%o (PARI) r = (3 + sqrt(5))/2;

%o for(n=1, 351, if(floor(n*r)%3==0, print1(n,", "))) \\ _Indranil Ghosh_, Mar 19 2017

%o (Python)

%o import math

%o from sympy import sqrt

%o r = (3 + sqrt(5))/2

%o [n for n in range(1, 351) if int(math.floor(n*r))%3==0] # _Indranil Ghosh_, Mar 19 2017

%Y Cf. A000201, A001622, A283773, A283774.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Mar 18 2017