OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 8 followed by k-2 occurrences of the digit 3 followed by the digits 89 is prime (see Example section).
a(27) > 2*10^5.
LINKS
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 83w89.
EXAMPLE
3 is in this sequence because (25*10^3 + 167) / 3 = 8389 is prime.
Initial terms and associated primes:
a(1) = 1, 139;
a(2) = 3, 8389
a(3) = 4, 83389;
a(4) = 5, 833389;
a(5) = 11, 833333333389, etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(25*10^# + 167) / 3] &]
PROG
(Magma) [n: n in [0..400] |IsPrime((25*10^n + 167) div 3)]; // Vincenzo Librandi, Sep 13 2016
(PARI) is(n)=ispseudoprime((25*10^n + 167)/3) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Price, Sep 12 2016
STATUS
approved