'(‘; (\'. on:kecoeﬁicmumhe}zmofe'mc-fxg

z- r
| un ¢rt= Th(-25c) - - s)
ON THE COEFFICIENTS IN THE i "e. - &5 -
EXPANSION OF ¢ AND ¢~ |. 1150 éc“'te‘—l—!+;—l-... A
By R. E, BEARD, MBE, F.1A, FSS. ( vt (, e +3.'; ) Wﬁ
Assistant General Manager of the Pearl Assurance Company, Ltd, rmor!\ ol 2l -
. | tr Y|
TH1s investigation has arisen out of D. C. Fraser’s note on the Gomper, | = gdo;’lcrﬂ' (6) -
Table (J.I.A. Vol. Lxxi, p. 423), and although of limited actuarial appli- ! . ) ’ "
cation the results are believed to be new and worth publication. Fraser | Equating powers of ¢™* in (5) and (6) we find <
expresses some difficulty in regard to the determination of the coefficienis C C C C —1 c
Ag; Ay, ... defined in his note, and in a personal letter Dr E. Michalup ha; ' s L —‘ L B e e +°—|’. ("“
pointed out a method of deriving a recurrence formula for them without utilizing (r+9)! r+a)t 1lr+s—-1)! (r+s)! ™

the ‘abacus’ but involving certain analytical properties of the Gamma function | Putting r + 5=k, we finally have =’
Consideration of Dr Michalup’s letter suggested that the recurrence formul; E /k %
could be obtained by elementary algebraic methods, and these are used below. | Cin=1- Eo (,) G- (7)

In the course of subsequent correspondence Dr J. C. P. Miller pointed out ‘ -
I
l
'

certain related studies and made some suggestions which prompted me 1, ' If we now put C,= — A, e~ for r >0 and note that Cy=1—e¢71, we have
further analysis, the main results of which are now presented. ‘ _
2. Using the conventions adopted by Fraser, but replacing xAc in his e met \I A+ Ayt ): (3)

notation by ¢, the expression for [, becomes ¢~ and the problem is to expand !

this in ascending powers of £. The allied problem of expanding ¢’ has been | where A=e¥ (_)nﬂ (r=1,2,...) (9)
died fairly deeply by Epstein,* who also giv ber of ref - n! B
studied fairly deeply by Epstein,* who also gives a number of references to n=0
earlier work on this topic. " : t with the svmbolic relationship
. ] > = R
3. Now if e‘=e(1+k1t+K25~!+...) (1) — A =(1+E}A, (10)
. 2 5. The values of A,, which by (10) are all integral, have been calculated as
and ¥ mie! (I +At +A2;+ ), (2) , far as =26 and are given below. For o <7 <20 they were given by Michalup
: ’ | and for 20 <7 <26 by Miller and have been verified by myself.
then, since e¢' ¢~ =1, the two series in brackets are reciprocal and the K, and 4, A 5
are related by the formula T o > A, . \
K, + (’) K, A+ (’) K, yAy+... +A,=o, 3 o  +1 o+ 267 | 18 - 2784 75061
1 2 S -1 10 + 413 19 - 23420 56300
. . - - 8 8
so that given the K, the A, can be found and vice versa. ; + c; ::I’. - 1;;2? :CI) + 2 3 1;22 gggg‘)
d et 4 + 1 13 — 50533 22 + 72 55030 33401
4 Now 8“'=1-——+—— 5 - 2 14 + 110176 23 |+ 559 25431 75252
1! 2! 6 -9 15 + 1966597 24 |+ 1358235875 07881
7 ! -9 16 + 9938669 25 | — 1683926105 3615
Iyl 1 (2t 8 +30.

17 ! +8638718 26 : —2 84811 54971 3244

6. Similarly, the function e =e(1+K,?+...) may be considered and the

N YR LA —
=4 ,.?.Jor! (1 Y 3! ) ‘ following symbolic relationship found for the coefficients K, : J] —
r o<
=1- Eo;—!C,. say; (4) ‘I Kin=(1+E}K,, (11) : ( Q
o r
where K,=¢! 20;-—' (r=r1,2,...). - (12)
neon!

® Epstein, L. F., J. Math. Phys. Vol. xvi1, pp. 15373, 1939. 1
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Values of K, for o<r<20 have been given by Epstein® and are given bely,,
together with the values for 20 <7 €26 which have been caléulated by mysels-

r K, r K, r K,

o H 9 21147 18 68 20768 0615y
I 1 10 1 15975 19.. 583 27422 05035
2 2 11 6 78570 20 5172 41582 35372
3 5 12 4213597 | 21 47486 98161 56751
4 15 13 276 44437 | 22 4 50071 57384 47323
5 | 52 14 1908 99322 | 23 44 15200 58550 84346
6 203 15 13829 58545 | 24 445 95886 92948 05289
7 | &7 16 104801 42147 | 25 4638 59033 22299 99353
8 | 4140 17 | 828648 69804 26 49631 24652 36187 5627,

7. Now, whil_st the A, and K, can be calculated from the relationships (1¢)
and (11) respectively, they can also be derived from a table of the difference
of zero. Thus from (g)

A=e T (-r5 (r=x2..)
= Z,(-ro7
=e 2, (=) {(nzio;)ﬁz!(fj'z)!* +A;?r

Ao™ A" Ao

TREPYIEEY (13)

r

)
r— are usually

referred to as Stirling’s numbers of the second kind or reduced differences of

The numbers A?o" are the differences of zero and the numbers

zero. The A, can thus be found by cross-addition of a table of AL?T with alter-

nating signs (as is pointed out by Michalup), and similarly the K, can be
obtained by cross-zddition without alternating the signs.

8. The ‘abacus’ referred to by Fraser is a table of Stirling’s numbers of
the second kind and, as he points out, one of its uses is to express x™ in terms
of ™, xm-1), .., the property used in § 7 above. The law of formation of the

AT

‘abacus’ numbers

A i :

P? can be very simply established by consideration of the
equation =" 4a sV, 4gq, s

multiplying each side by s and expressing the right-hand side in terms of
sirel) 50 ete.

*® Epstein, L. F., J. Math. Phys. Vol. xvr, PP- 153-73, 1939.
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| ¢ References to tabulations of %'-?.md A%0" are given in the Index of
Juthematical Tables, §§ 4.9241 and 4.9242. An extensive table is given in
statistical Tables by Fisher and Yates covering the range n =2(1)25, p=2(1)n,
| nd this has been used for the calculation of A, and K,. Unfortunately, this
. -unle contains a number of serious errors of which a list has recently been
I .ublished in Mathematical Tables and other Aids to Computation, Vol. 1v, No. 9,
‘ . 27, January 1950. An extension of the table to »=26 is given in the
\ppendix to this note.
I 1o. Itis of some interest to note that an explicit expression for the numbers
F?f can be found in the form

'I np—l—(n:l)(n—1)"1+(n;1)(ﬂ-2)7‘1"-"
@—1)! ’

| :nd the coefficients A, can be expressed as

(14)

‘ I I
_A’_I+I+z!+"'+(r-1)!

r—1

_21_!{I+1+...+(,._;I_2)!}

i +3H{1+1+ +;=
2! (-3

‘ (__)r—l (rri—:) K (15)

but these are not suitable for numerical calculation.

i 11. No reference has been found to the previous tabulations of the coeffi-
 dents A, but references to the K, are given in the Index of Mathematical
| Tables, §§ 4.676 and 5.216.

12. The rapid increase of the coefficients K, is interesting, as is the oscillating
nature of the A,, and suggests that an investigation into their behaviour for
Y_Llrge r would be of value; the remainder of this note is devoted to these
i problems. Some investigations for K, are given by Epstein,* but an alternative
! approach has been developed and some considerable improvement made.
Furthermore, it has been found possible to extend the analysis to the A,.

' 13. For the purpose of this analysis it was found desirable to have values of
K. and A, for a fairly large value of 7, and the following values were found by
| 'ummation of the series (9) and (12)

l logyo K00 = 115677476,
V logyo A1oo = 104°599421 ( + ve sign).

To calculate the value of Ay, to eight significant figures it was necessary to
tlculate the value of the individual terms from twenty-figure logarithms.

® Epstein, L. F., ¥. Math. Phys. Vol. xvii1, pp. 153~73, 1939.
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4. Thekﬂowﬁglmma‘wﬂlbeuudfortbcinvuﬁptjonofﬁ,md;\r_
Lemma. If‘-::_f(t)zofortuaothu

WO+ B10=["f0asa £ [“ocsamnar.
=] 0 s=140
The Euler-Maclaurin formula gives '

E10=[ 10d+110-Br 0+ B .. H o)

Therefore 4f(0)+ £ 0~ [ 1 dt= § (~yBag,, .
{m1 0 me=] 2m

Qm_y =f*1(0)/(2m~1)!,

so that by Taylor’s theorem J»)= tio ay.

where

i $(2m)(2m)!
Since B = ot i (15
where {(2m) is the Riemann zeta function, we have
S (ria s § [T
me=1 2m M1 me=1 o 2%m-1 ”-zm(ez_l) 2m—1 &

o £0 ] x’a, @ xtat ) _
_t§0’f0 dei—f(} m+ldx} where t=2m—

- }EUW 3 dx+f°°aa st 08 dx}
t=0lJo 4=y (2mi)+l 0 gm1(=—2m)+

S S i

= IR T s a4
t=0 =1 (2755 )1 t--('.l.9-1(‘2"751)""'l ‘

a0 00 w o @ @K .
=X X Vet iadyy 3 3 fo Yty g, dy

t=0s=1 t=05=1
2] © @©
=23 f cos2msy 3 yta,dy
8=140 Lm0
@

= 2'§1 f:cos 2msy f(v)dy.

first place, for the special function under dis-

at it in his investigation of the Euler-Maclaurin formula and gives the finite form
1 [P 2 2 b 2nl (t—a)
}f(a)+f(a+w)+...+if(b)=—— SO dt+= % | f(1) cos 222 3) dr.
“/a Wi=1)a @
An alternative form with various proofs and special cages together with various
references is given by Titchmarsh (Introduction to Theory of Fourier Integrals, p. 6o,
1937) as follows:

<8 {iF. o)+ IR )} = fro+ él-f(u)}.

o
where aff=2am, a>o and F,(x)-J;fof(t)cosxldt.
Itwnthwghtth.td)epmofgivenhﬂewwubeufhmwwmﬁn.

gk

; ; . !
cussion, but its elegance and the fact that it was capable of easy generalization suggested

(Divergent Series, p. 330, Oxford University Press, 1949) indicates that Poisson arrived
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15 Tl.kingf(t)=:—:, we have e
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© T
— cos 2mst dt.
o 2l

wt" L
eK,=f0 Sdt+a 3

s=]1

(18)
i 16. Considering now the coefficients A,, we have
@ r
? Arel= 3 (=¥5 (150
! =0 t!

—an @) S
! ‘ TS (2T el

we have

G:tf

Applying the lemma to (@)1

< (28)7 _ = (2t)" D ()
Ztgow—zfo Wdt+4,§1fo (Tt)!coszmtdt

mtr o Oﬁtf
| =f —dt+2 3 —jcos mst dt,
o t! am1J0 ¢ R

oW gr

t o0
jcosastdt—2 3,
o t!

o tf
—cos27mstdt

o
Ael=2 3 ’
s=1Jo 2!

gm=]

Hence

1

|

’ =2 i c,o—rcos(zs—x)rrtdt. (1
9

i sm]1J0 ¢!

| From (18) and (19) we see that the

|

problem of approximating to K, and A,
educes to the evaluation of '

-] t' [-+] tf
f Pl dt and J- Ficos mst dt.
o t! o t!

tT

@0
17. First considerin ~7dt let m denote the value of ¢ for which #7/¢! is
7 g o t!

d
—Int !)
(dt peyp o

Uft!=(m+8)r/(m+8)!.
Taking logarithms and expanding in powers of 8, we have

|

| imaximum, so that r =m

| Write

(20)

1n(t’/t!)=r1nm—ln(m!)—%{r+m2y’/’(m)}+3Ta;—,,{2r—m"y’r"(m)}—..., (21)

!

' where ¥(z) = }2 In(z!)  (digamma function),
PR : : .
¥ (2)= et In(z!) (trigamma function),
ad my (m)=r




If terms in 4% and higher powers of § are ignored we may write
S gr . mr o 42 o
.Io Hd!-p;l—!f_mexp[-—;{r+m v (m)}]d&
) ﬂ'+1AJ(2ﬂ')
, TmlJr+my (m))’
provided r is large. '

18. Alternatively, we may write
@ gr mnt © 6 r 82 63
— g el _‘m) - ‘ll - INZ4 .
fo t!dt m!J‘_,,.(I-Fm) e exp {z!v (m)+3!v (m)+ }d@,

and if terms in { } are ignored we have the approximation

w gr mrtlery|
—dl &= —, (2
o t! mlyr+l :

19. Finally, we may write

| }
wﬁdt:!'_r ® 1 +§_)r+m “(ﬂ)ra m{r+m? ¢im)}
o t! m!

2

—m m
3
X exp l:—s%m{zt,;’f’(m)+mz/'”(m)}+...:I dsé, (24
and if terms in [ ] are ignored we have
o mtlePp! )
J.o ﬁdt* mipr+l (25

where p=r+m%) ().
20. The following table sets out the closeness of the approximations (22).
(23) and (25):

r log,s K, Approximation by formula
(22) (23) (25)
1 000000 ‘024692 217599 ‘042070
2 301030 ‘305180 454693 ‘315029
3 | ‘698970 701166 832034 708136
5 1716003 1717182 1-829365 1721644
' 1o | 5064364 | 5:064658 5°157492 5:067059
i 20 13713693 13-713697 13791921 13714970
I 26 19'695755 19'695716 19-769329 19:696715
100 115677476 11567742 | 11573296 11567750

Consideration of these results shows that the errors from formula (22).
whilst smaller than those from (23) or (25), change sign between r =10 and
r=20. On the other hand, the errors from formula (25) are all of the same sign
and decrease steadily with increasing r. The errors in formula (22), apart from

the Euler-Maclaurin terms, arise from two sources, namely, substitution of |

— 00 for —m as the lower limit of the integral and the neglect of terms in 43, etc.
whilst those in formula (25) arise only from the terms neglected.

21. We can, however, find an asymptotic- formula for the integral b
retaining the neglected exponential terms in (24), expanding them in powersof"
-]

and integrating the resulting series of terms of the form J- 1 .(1 + i—) g-tvim godt

« O On the Coeficients in the Expansion of ¢ and e~ (M',
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\fter expressing the trigamma, tetragamma, ... functions by their —— .
.-\Eacn:ilons the following formula results after a oomidc);able arr;c:gllr’ltto%(;
sduction:

"o gr M"”‘f'p!
! .'o t_! m!p""T

i m_sm® m om? 35m3 I
xI—cGt it — 33T T 5 om
( 39° 240° 1207 189 72p8 T JapPm T 72p% opi T ) b
Values calculated from the leading terms in (26) are as follows:

' r log, K, Formula (26) |

| = |
5 | 1-716003 1715928

i 10 5004364 | 5064353 |

zg i 13-713693 ' 13-713603 |

2 v 19:695755 19-695755 |

100 115677476 115-6774§ |

[t is seen that the Euler-Maclaurin adi igi
ustment terms are negl
,' sbove order of accuracy for r > 10. ! » sligible o the

. o pr
1 22. The reduction of fo 7] Cos st dt proved to be more troublesome, the
lificulty partly arising from an observation that the signs of the values of A
\ r

or rg / p+1 -
or r<26 were reproduced by cosp+1(tan 1—). Subsequent analysis

showed this to be partly coincidence, but not until some fruitless investigations

:r:i lzeen made. Following the analysis of § 19 we may write, considering the
ase s=1,

w0 pr mr [ FaY
—COSTEdt = — f (1 +_) e80m oo
fo t! mt)_\'Tm (m+9)

! 83
| x exp [- ST mrmy s a2

l Ifthe termsin [ ] are ignored the integral may be evaluated a—s

0 gr g = mrlep p !
| , jjcosmt t;mcos(p+x)6cos’*10, (28)
 vhere § = tan-1 7™ .
‘ ere =tan Y and we may write
Ayel=2K ecos(p+1)6cos?14, (29)

23 As an indication of the accuracy of formula (28) the following values are
#ven—in all cases the signs of the terms are correct:

r f logy, | A, | | Calculated from |

i | formula (29) Error
3 *3010 - -

1o | 2‘2160 2'?322 | Iigg:

e 62938 65046 | +3008

as lg_gf [ 10°3374 | +:3454

S0 g | 14'4957 , + 2694

104°5994 : 104'9574 i +-3580

| | '
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“t P;h approximate values start by being roughly twice the true values, .ho“.-il._, . The following table shows the degree of approximation () for the formula

pe r+1 —y
a very slow convergence to the true values. ; .&,+3¢'%—§£!mﬂlerﬂm(p+10+mﬁ), (32)

a. rr L = 1. i
24. Inclusion of the tu'mup[-—m{zy (m) + my (-.)}+...] i formul,

: : b leads to express; | and (8) fz‘;&"_’ formula (31), where X and Y are taken to two further terms than
(27), expanding in powers of &and integrating term by term le Pression: ' jown above:
of the form

(a) | &)
m*+1e? plcos?+1 g (P+‘)m¢ml6cos(p+5+ 1)0—...:]. | £ logs | A, | Formula (32) i Formula (31)
1 : | | {
. P’+ i I 5 *3010 | ‘2442 ‘2217 '
By noting that ; L 10 2:6160 | 26647 2-6205
20 | 99920 10'0257 9°9897 i
cos(_p+s+I)@COS'0=C05(P+I)0‘}{(I+1't):+(l_it)l} ‘ 26 ! 15°4546 154421 15°4526 |
. ! 100 | 104°5994 104°5765 1045990 |
. I L S ‘
+sm(P+I)6z—i{(—1+it)’ (I—it)’:’ !

The nature of the convergence for a fairly low value of r is shown in the

. . - essed 2. | Mllowing figures for 7 =10 which give the approximate values at successive
where t=tan 6, and that the terms in [ ] in formula (27) can be expr ol «ages ing(b)gabove. gl PP

s 8 8 1 l L) Y §_ s+ 2m} + J |

m [(;n- +2) log (;z + I) - 2,; + 12m? 208 m m&+m ’ ! No. of terms logyo | Ay | | Approx. - True f
considerable reduction » 1 2-6647 | +-0487 ‘

we finally find that, after Ay ) l ! ise e s

o pr mrle?plcos B N TR e 3 26236 @ + 0076

J. —costdt= —'n‘le—PHI—e NIXCO’S(P'Q"IB“FMI-?) 3 2-5890 ! — 0270

o t! : ;o — . 5 2-6203 +-0045

+Ysin(p+160+mp)}, (50 True value 26160 ' —

.1
=(2—sin*#)logcos§ + 2sin?f - Fsin 6 cos § +terms in —;, 26. Some part of the error is due to neglect of the terms in 1/m?, etc., but the

where a=(2 )log m ) g
: dlculations have not been extended to include these. Consideration of the
p=0(sin?6 —2) —sin 6 cos flog cos § + 2 sin 6 cos & + terms in ot rder of magnitude of these terms and of the closeness of the results (8) in

e preceding paragraph shows their effect to be small for larger values of m.
X cos? 9{ (6 — tan 8) tan 6 — m log cos 8} ‘The values of m and p for representative values of r are given below:
=1+ mU— - J
y 4
[

(p+2)costd tan?6){m? (log cos 6)2 — m2 (6 — tan )2 — mtan*#/, ! ! = : 2
T [ - [ 5 3561266 8-107366
—2tan#{2m?(f — tan 6)log cos @ —mtant] 10 S5tz ptler-{L.44
‘ zg i 8-916782 26-43 gzs

kb s asaaransensnnnernan e saaais , | 2 1074333 ! 36-25882
cos?f l I 100 29°423186 128-328853
and Y=T{mtan@logcos0+m(8—tan0)} !

» 27. A further error arises from neglect of terms for s> 1 in formula (19).
N 2+ 2') czos — [(tan®*6 — 1) {2m? (6 — tan 6) log cos & — m tan 6} in order of magnitude comparison can be obtained from formula (28) because
2!p ¢ can write

—~2tanf{m?(log cos )* —m? (6 — tan 6)% ~ m tan? 6}] © o o1 I
F e 2 an (g 3) Ilzf t—‘cosrrta't%-m+ ot !cosp+10( mn)‘(””

| o t! m! P’-H. I+ 7
i i low value

. The expressions for X and Y are asymptotic, and for very !

of 215 the succgcive terms change sign but diverge before reaching a smal HM

enou i for assignint
h magnitude for the formula to be of value other than ¢ nint
limfmg. Howelver, for larger values of r the terms converge fairly uplﬂ;;
although some irregularities exist due to the periodic nature of the functio

I
ogr 'r-.‘—l‘lipj .
I,EJ.O t—lcoo3m‘dt+7!~— ”_COSP+1'01 (I+§:ﬂ)k’+l’

JA
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; where 6, =tan-! (?)
- Up+1)
cosp+1 61(1 +11') .

whence Iy/1; %= 2

— Tl
cosp+16(l+%—m) i

)\ KP+1)
1+7%)
Forr=20 1% _.08 tht—L‘——- -5
orr=20 —==1985, 50 a( S iD= 3792 X 107,
14—
5)

arm\ Mo+
I+—

nm '
7 =100 3= *717, 8o that _LW)=7'42 x 10718,

5

Unless therefore cos p + 1 § happens to approximate to zero the terms with s> 1
will be negligible relative to the term with s=1.

28. The above analysis has been carried through on the assumption that r is
positive integral, but clearly the approximations are true for positive real r.
For complex r both K, and A, are complex quantities, but no analysis has been
made in this region. Similarly, this note has been largely relieved of various
analytical considerations which arise at a number of points.

i
1,

APPENDIX

| AT ot i

r | Values of r—? for n=26 z

a ! 335 54431 '
3 42 g6107 50290
4 18722 63569 46265
5 12 23019 61602 92565
6 224 59518 69741 25331
7 1631 85379 79910 16600
8 5749 62225 19456 64950
9 11201 51678 09551 25625
1o “ 13199 55537 28468 48005
11 i 10029 07834 09984 76760
12 | 5149 50735 38569 58820
13 | 1850 56857 42535 50060
14 ( 477 89861 83962 88260
I35 i 90 44903 01911 04000
16 | 12 72587 72424 82560
17 I 34373 17953 78830
18 | 10702 535461 01760
19 | 643 38390 18730
20 i 29 06228 64675
21 | 97591 04355
22 2389 29405

23 ; 41 26200 |

24 . 47450 '

|

25 325 i

26 1 [
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