login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369090
Expansion of e.g.f. A(x) satisfying A(x) = A( x^2*exp(x) ) / x, with A(0) = 0.
5
1, 2, 9, 52, 425, 4206, 48307, 632360, 9444465, 159240250, 2983729331, 61300668012, 1367054727337, 32844312889766, 845234187028155, 23190947446000336, 675895337644401377, 20863665943202969586, 680448552777544884643, 23395823324931227353940, 846248620848062865320601
OFFSET
1,2
COMMENTS
Limit (a(n)/n!)^(1/n) = 1/w where w*exp(w) = 1 and w = LambertW(1) = 0.567143290409783872999968... (cf. A030178).
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = A(x^2*exp(x)) / x.
(2) R(x*A(x)) = x^2*exp(x), where R(A(x)) = x.
(3) A(x) = x * exp( Sum_{n>=0} F(n) ), where F(0) = x, and F(n+1) = F(n)^2 * exp(F(n)) for n >= 0.
(4) A(x) = x * exp(L(x)), where L(x) = x + L(x^2*exp(x)) is the e.g.f. of A369091.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! + 4206*x^6/6! + 48307*x^7/7! + 632360*x^8/8! + 9444465*x^9/9! + 159240250*x^10/10! + ...
RELATED SERIES.
The expansion of the logarithm of A(x)/x starts
log(A(x)/x) = x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! + 2190*x^6/6! + 21882*x^7/7! + 268856*x^8/8! + ... + A369091(n)*x^n/n! + ...
and equals the sum of all iterations of the function x^2*exp(x).
Let R(x) be the series reversion of A(x),
R(x) = x - 2*x^2/2! + 3*x^3/3! + 8*x^4/4! - 155*x^5/5! + 1464*x^6/6! - 7931*x^7/7! - 65360*x^8/8! + 2742345*x^9/9! + ...
then R(x) and e.g.f. A(x) satisfy:
(1) R( A(x) ) = x,
(2) R( x*A(x) ) = x^2 * exp(x).
GENERATING METHOD.
Let F(n) equal the n-th iteration of x^2*exp(x), so that
F(0) = x,
F(1) = x^2 * exp(x),
F(2) = x^4 * exp(2*x) * exp(x^2*exp(x)),
F(3) = x^8 * exp(4*x) * exp(2*x^2*exp(x)) * exp(F(2)),
F(4) = x^16 * exp(8*x) * exp(4*x^2*exp(x)) * exp(2*F(2)) * exp(F(3)),
F(5) = x^32 * exp(16*x) * exp(8*x^2*exp(x)) * exp(4*F(2)) * exp(2*F(3)) * exp(F(4)),
...
F(n+1) = F(n)^2 * exp(F(n))
...
Then the e.g.f. A(x) equals
A(x) = x * exp(F(0) + F(1) + F(2) + F(3) + ... + F(n) + ...).
equivalently,
A(x) = x * exp(x + x^2*exp(x) + x^4*exp(2*x)*exp(x^2*exp(x)) + x^8*exp(4*x)*exp(2*x^2*exp(x)) * exp(x^4*exp(2*x)*exp(x^2*exp(x))) + ...).
PROG
(PARI) {a(n) = my(A=x); for(i=0, #binary(n),
A = subst(A, x, x^2*exp(x +x^2*O(x^n)) )/x ); n! * polcoeff(H=A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A369091, A369550 (a(n)/n), A030178.
Cf. A367390.
Sequence in context: A330200 A143922 A305304 * A110322 A161631 A121678
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 26 2024
STATUS
approved