login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369088
Expansion of Sum_{n>=0} ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )^n / 4^n.
2
1, 1, 4, 28, 280, 3639, 57996, 1093795, 23821104, 588282772, 16243898516, 495894495629, 16584179388232, 602955889304341, 23678788166350620, 998882687260157956, 45047554811998482016, 2162775743390757357579, 110136661581764181626660, 5929361362606879245799055, 336484778280758295928357240
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )^n / 4^n.
(2) A(x) = Sum_{n>=0} ((1+x)/(1-x))^(n^2)/4^n * Sum_{k=0..n} (-1)^k * binomial(n,k) * ((1-x)/(1+x))^(2*n*k).
a(n) ~ c * d^n * n^n, where d = 1.0710130838356321768944119175659886... and c = 0.80953649272682852412550716575... - Vaclav Kotesovec, Jan 29 2024
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3639*x^5 + 57996*x^6 + 1093795*x^7 + 23821104*x^8 + 588282772*x^9 + 16243898516*x^10 + ...
By definition, A(x) equals the sum
A(x) = 1 + B_1(x) + B_2(x)^2 + B_3(x)^3 + B_4(x)^4 + ... + B_n(x)^n + ...
where
B_n(x) = ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )/4,
explicitly,
B_1(x) = x + x^3 + x^5 + x^7 + x^9 + ...
B_2(x) = 2*x + 6*x^3 + 10*x^5 + 14*x^7 + 18*x^9 + ...
B_3(x) = 3*x + 19*x^3 + 51*x^5 + 99*x^7 + 163*x^9 + ...
B_4(x) = 4*x + 44*x^3 + 180*x^5 + 476*x^7 + 996*x^9 + ...
B_5(x) = 5*x + 85*x^3 + 501*x^5 + 1765*x^7 + 4645*x^9 + ...
B_6(x) = 6*x + 146*x^3 + 1182*x^5 + 5418*x^7 + 17718*x^9 + ...
B_7(x) = 7*x + 231*x^3 + 2471*x^5 + 14407*x^7 + 57799*x^9 + ...
...
and
B_2(x)^2 = 4*x^2 + 24*x^4 + 76*x^6 + 176*x^8 + 340*x^10 + ...
B_3(x)^3 = 27*x^3 + 513*x^5 + 4626*x^7 + 26974*x^9 + 116901*x^11 + ...
B_4(x)^4 = 256*x^4 + 11264*x^6 + 231936*x^8 + 3005440*x^10 + ...
B_5(x)^5 = 3125*x^5 + 265625*x^7 + 10596875*x^9 + 265509375*x^11 + ...
B_6(x)^6 = 46656*x^6 + 6811776*x^8 + 469530432*x^10 + ...
B_7(x)^7 = 823543*x^7 + 190238433*x^9 + 20868579620*x^11 + ...
...
PROG
(PARI) {a(n) = my(A=1, X=x + x*O(x^n)); A = sum(m=0, n, ((1+X)^m/(1-X)^m - (1-X)^m/(1+X)^m)^m/4^m ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2024
STATUS
approved