Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 29 2024 06:05:22
%S 1,1,4,28,280,3639,57996,1093795,23821104,588282772,16243898516,
%T 495894495629,16584179388232,602955889304341,23678788166350620,
%U 998882687260157956,45047554811998482016,2162775743390757357579,110136661581764181626660,5929361362606879245799055,336484778280758295928357240
%N Expansion of Sum_{n>=0} ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )^n / 4^n.
%H Paul D. Hanna, <a href="/A369088/b369088.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
%F (1) A(x) = Sum_{n>=0} ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )^n / 4^n.
%F (2) A(x) = Sum_{n>=0} ((1+x)/(1-x))^(n^2)/4^n * Sum_{k=0..n} (-1)^k * binomial(n,k) * ((1-x)/(1+x))^(2*n*k).
%F a(n) ~ c * d^n * n^n, where d = 1.0710130838356321768944119175659886... and c = 0.80953649272682852412550716575... - _Vaclav Kotesovec_, Jan 29 2024
%e G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3639*x^5 + 57996*x^6 + 1093795*x^7 + 23821104*x^8 + 588282772*x^9 + 16243898516*x^10 + ...
%e By definition, A(x) equals the sum
%e A(x) = 1 + B_1(x) + B_2(x)^2 + B_3(x)^3 + B_4(x)^4 + ... + B_n(x)^n + ...
%e where
%e B_n(x) = ( (1+x)^n/(1-x)^n - (1-x)^n/(1+x)^n )/4,
%e explicitly,
%e B_1(x) = x + x^3 + x^5 + x^7 + x^9 + ...
%e B_2(x) = 2*x + 6*x^3 + 10*x^5 + 14*x^7 + 18*x^9 + ...
%e B_3(x) = 3*x + 19*x^3 + 51*x^5 + 99*x^7 + 163*x^9 + ...
%e B_4(x) = 4*x + 44*x^3 + 180*x^5 + 476*x^7 + 996*x^9 + ...
%e B_5(x) = 5*x + 85*x^3 + 501*x^5 + 1765*x^7 + 4645*x^9 + ...
%e B_6(x) = 6*x + 146*x^3 + 1182*x^5 + 5418*x^7 + 17718*x^9 + ...
%e B_7(x) = 7*x + 231*x^3 + 2471*x^5 + 14407*x^7 + 57799*x^9 + ...
%e ...
%e and
%e B_2(x)^2 = 4*x^2 + 24*x^4 + 76*x^6 + 176*x^8 + 340*x^10 + ...
%e B_3(x)^3 = 27*x^3 + 513*x^5 + 4626*x^7 + 26974*x^9 + 116901*x^11 + ...
%e B_4(x)^4 = 256*x^4 + 11264*x^6 + 231936*x^8 + 3005440*x^10 + ...
%e B_5(x)^5 = 3125*x^5 + 265625*x^7 + 10596875*x^9 + 265509375*x^11 + ...
%e B_6(x)^6 = 46656*x^6 + 6811776*x^8 + 469530432*x^10 + ...
%e B_7(x)^7 = 823543*x^7 + 190238433*x^9 + 20868579620*x^11 + ...
%e ...
%o (PARI) {a(n) = my(A=1, X=x + x*O(x^n)); A = sum(m=0, n, ((1+X)^m/(1-X)^m - (1-X)^m/(1+X)^m)^m/4^m ); polcoeff(A, n)}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A319947, A319466, A369089.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 28 2024