Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 29 2024 11:58:49
%S 1,2,9,52,425,4206,48307,632360,9444465,159240250,2983729331,
%T 61300668012,1367054727337,32844312889766,845234187028155,
%U 23190947446000336,675895337644401377,20863665943202969586,680448552777544884643,23395823324931227353940,846248620848062865320601
%N Expansion of e.g.f. A(x) satisfying A(x) = A( x^2*exp(x) ) / x, with A(0) = 0.
%C Limit (a(n)/n!)^(1/n) = 1/w where w*exp(w) = 1 and w = LambertW(1) = 0.567143290409783872999968... (cf. A030178).
%H Paul D. Hanna, <a href="/A369090/b369090.txt">Table of n, a(n) for n = 1..300</a>
%F E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies the following formulas.
%F (1) A(x) = A(x^2*exp(x)) / x.
%F (2) R(x*A(x)) = x^2*exp(x), where R(A(x)) = x.
%F (3) A(x) = x * exp( Sum_{n>=0} F(n) ), where F(0) = x, and F(n+1) = F(n)^2 * exp(F(n)) for n >= 0.
%F (4) A(x) = x * exp(L(x)), where L(x) = x + L(x^2*exp(x)) is the e.g.f. of A369091.
%e E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 425*x^5/5! + 4206*x^6/6! + 48307*x^7/7! + 632360*x^8/8! + 9444465*x^9/9! + 159240250*x^10/10! + ...
%e RELATED SERIES.
%e The expansion of the logarithm of A(x)/x starts
%e log(A(x)/x) = x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! + 2190*x^6/6! + 21882*x^7/7! + 268856*x^8/8! + ... + A369091(n)*x^n/n! + ...
%e and equals the sum of all iterations of the function x^2*exp(x).
%e Let R(x) be the series reversion of A(x),
%e R(x) = x - 2*x^2/2! + 3*x^3/3! + 8*x^4/4! - 155*x^5/5! + 1464*x^6/6! - 7931*x^7/7! - 65360*x^8/8! + 2742345*x^9/9! + ...
%e then R(x) and e.g.f. A(x) satisfy:
%e (1) R( A(x) ) = x,
%e (2) R( x*A(x) ) = x^2 * exp(x).
%e GENERATING METHOD.
%e Let F(n) equal the n-th iteration of x^2*exp(x), so that
%e F(0) = x,
%e F(1) = x^2 * exp(x),
%e F(2) = x^4 * exp(2*x) * exp(x^2*exp(x)),
%e F(3) = x^8 * exp(4*x) * exp(2*x^2*exp(x)) * exp(F(2)),
%e F(4) = x^16 * exp(8*x) * exp(4*x^2*exp(x)) * exp(2*F(2)) * exp(F(3)),
%e F(5) = x^32 * exp(16*x) * exp(8*x^2*exp(x)) * exp(4*F(2)) * exp(2*F(3)) * exp(F(4)),
%e ...
%e F(n+1) = F(n)^2 * exp(F(n))
%e ...
%e Then the e.g.f. A(x) equals
%e A(x) = x * exp(F(0) + F(1) + F(2) + F(3) + ... + F(n) + ...).
%e equivalently,
%e A(x) = x * exp(x + x^2*exp(x) + x^4*exp(2*x)*exp(x^2*exp(x)) + x^8*exp(4*x)*exp(2*x^2*exp(x)) * exp(x^4*exp(2*x)*exp(x^2*exp(x))) + ...).
%o (PARI) {a(n) = my(A=x); for(i=0, #binary(n),
%o A = subst(A, x, x^2*exp(x +x^2*O(x^n)) )/x ); n! * polcoeff(H=A, n)}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A369091, A369550 (a(n)/n), A030178.
%Y Cf. A367390.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jan 26 2024