The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110322 Row sums of A110321, a number triangle related to the Jacobsthal numbers. 3
 1, 2, 9, 52, 425, 4206, 50737, 708464, 11350257, 204171130, 4084757561, 89849981772, 2156575777369, 56068679418662, 1569955094823585, 47098171778191816, 1507149193966389857, 51242941744764975474 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of number triangle A110321. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: exp(x)/(1-x-2*x^2). a(n) = Sum_{k=0..n} n!*J(n-k+1)/k! where J(n)=A001045(n). a(n) = Sum_{k=0..n} binomial(n, k)*k!*J(k+1) where J(n)=A001045(n). a(n) ~ n!*2^(n+1)*exp(1/2)/3. - Vaclav Kotesovec, Oct 18 2012 Conjecture: a(n) +(-n-1)*a(n-1) -(2*n-1)*(n-1)*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 11 2014 a(n) - n*a(n-1) - 2*n*(n-1)*a(n-2) - 1 = 0. - Martin Clever, Mar 22 2023 a(n) = (2*e^(1/2)*2^n*Gamma(n+1,1/2)+e^-1*(-1)^n*Gamma(n+1,-1))/3. - Martin Clever, Mar 25 2023 MATHEMATICA CoefficientList[Series[E^x/(1-x-2*x^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 18 2012 *) CROSSREFS Cf. A001045, A110321. Sequence in context: A143922 A305304 A369090 * A161631 A121678 A124347 Adjacent sequences: A110319 A110320 A110321 * A110323 A110324 A110325 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 16:58 EDT 2024. Contains 372664 sequences. (Running on oeis4.)