login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110320 Number of blocks in all RNA secondary structures with n nodes (an RNA secondary structure can be viewed as a restricted noncrossing partition). 17
1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217, 8146, 20668, 52531, 133726, 340909, 870213, 2223958, 5689807, 14571335, 37350585, 95821071, 246015677, 632088930, 1625119218, 4180845277, 10762096850, 27718352411, 71426753423, 184146711578 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Antidiagonal sums of A132812. - Philippe Deléham, Jun 08 2013
LINKS
Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Grand Dyck paths with air pockets, arXiv:2211.04914 [math.CO], 2022.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problèmes d'énumeration en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
G.f.: (1-z-z^2)/(2*z^2*sqrt(1-2*z-z^2-2*z^3+z^4))-1/(2*z^2).
a(n) = Sum_{k=1..n} k*A110319(n,k).
Conjecture: a(n) = (A051292(n+2)-A051286(n+1))/2. - Gerald McGarvey, Jan 14 2007
a(n) = (A051286(n+2)-A051286(n+1)-A051286(n))/2. - Benedict W. J. Irwin, Sep 24 2016
a(n) ~ sqrt(4 + 9/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Sep 25 2016, equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(n-7)*a(n-3) +2*(2*n-3)*a(n-4) +(n-5)*a(n-5) +(-n+4)*a(n-6)=0. - R. J. Mathar, Feb 21 2020
EXAMPLE
a(4)=13 because the 4 (=A004148(4)) RNA secondary structures of size 4, namely 1/2/3/4, 13/2/4, 14/2/3 and 1/24/3, have altogether 4+3+3+3=13 blocks.
MAPLE
G:=1/2*(1-z-z^2)/z^2/(1-2*z-z^2-2*z^3+z^4)^(1/2)-1/2*1/(z^2): Gser:=series(G, z=0, 37): seq(coeff(Gser, z^n), n=1..33);
MATHEMATICA
Table[Sum[Binomial[n-j+1, j]Binomial[n-j+1, j-1], {j, 0, n}], {n, 1, 25}] (* Benedict W. J. Irwin, Sep 24 2016 *)
CROSSREFS
Sequence in context: A255170 A255630 A298535 * A219230 A108890 A220739
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 19 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 20:15 EST 2024. Contains 370307 sequences. (Running on oeis4.)