login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367390
Expansion of e.g.f. A(x) satisfying A(x)^2 = exp(x) * A(x*A(x)) with A(0) = 0.
5
1, 2, 9, 52, 545, 6366, 98707, 1700840, 35405505, 817958170, 21500633891, 618661892652, 19636408658737, 675144805723766, 25147073628948195, 1004734122294047056, 42965745214637476097, 1955039747566085781426, 94404335950307686644163, 4818562790963397438214100
OFFSET
1,2
COMMENTS
Note that if F(x)^2 = exp(x) * F(x*F(x)) with F(0) = 1, then F(x) is the e.g.f. of A367391.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! and B(x) = x*A(x) satisfies the following formulas.
(1) A(x)^2 = exp(x) * A(x*A(x)).
Let B^n(x) denote the n-th iteration of B(x) = x*A(x), where B^(n+1)(x) = B( B^n(x) ) with B^0(x) = x, then
(2) log( A(x)/x ) = Sum_{n>=0} B^n(x).
(3) B^n(x) = x*A(x)^(2^n - 1) / exp( Sum_{k=0..n-2} (2^(n-k-1) - 1) * B^k(x) ) for n > 1.
(3.a) B^2(x) = x*A(x)^3 / exp(x).
(3.b) B^3(x) = x*A(x)^7 / exp(3*x + B(x)).
(3.c) B^4(x) = x*A(x)^15 / exp(7*x + 3*B(x) + B^2(x)).
(3.d) B^5(x) = x*A(x)^31 / exp(15*x + 7*B(x) + 3*B^2(x) + B^3(x)).
(4) A( B^n(x) ) = A(x)^(2^n) / exp( Sum_{k=0..n-1} 2^(n-k-1) * B^k(x) ) for n > 0.
(4.a) A(B(x)) = A(x)^2 / exp(x).
(4.b) A(B^2(x)) = A(x)^4 / exp(2*x + B(x)).
(4.c) A(B^3(x)) = A(x)^8 / exp(4*x + 2*B(x) + B^2(x)).
(4.d) A(B^4(x)) = A(x)^16 / exp(8*x + 4*B(x) + 2*B^2(x) + B^3(x)).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 545*x^5/5! + 6366*x^6/6! + 98707*x^7/7! + 1700840*x^8/8! + 35405505*x^9/9! + 817958170*x^10/10! + ...
where A(x)^2 = exp(x) * A(x*A(x)) as can be seen from the following expansions
A(x)^2 = 2*x^2/2! + 12*x^3/3! + 96*x^4/4! + 880*x^5/5! + 11280*x^6/6! + 167664*x^7/7! + 3030944*x^8/8! + ...
A(x*A(x)) = 2*x^2/2! + 6*x^3/3! + 60*x^4/4! + 500*x^5/5! + 7230*x^6/6! + 104202*x^7/7! + 1962296*x^8/8! + ...
Let B(x) = x*A(x), then log( A(x)/x ) equals the sum of all iterations of B(x)
log( A(x)/x ) = x + B(x) + B(B(x)) + B(B(B(x))) + B(B(B(B(x)))) + ...
which is equivalent to
log( A(x)/x ) = x + x*A(x) + x*A(x)*A(x*A(x)) + x*A(x)*A(x*A(x)) * A( x*A(x)*A(x*A(x)) ) + ...
RELATED SERIES.
A(x)/x = 1 + x + 3*x^2/2! + 13*x^3/3! + 109*x^4/4! + 1061*x^5/5! + 14101*x^6/6! + 212605*x^7/7! + 3933945*x^8/8! + 81795817*x^9/9! + ...
log( A(x)/x ) = x + 2*x^2/2! + 6*x^3/3! + 60*x^4/4! + 500*x^5/5! + 6870*x^6/6! + 96642*x^7/7! + 1824536*x^8/8! + 36995688*x^9/9! + ...
Successive iterations of B(x) = x*A(x) begin
B(x) = 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! + 3270*x^6/6! + 44562*x^7/7! + 789656*x^8/8! + ...
B(B(x)) = 24*x^4/4! + 240*x^5/5! + 3600*x^6/6! + 52080*x^7/7! + 994560*x^8/8! + ...
B(B(B(x))) = 40320*x^8/8! + 1451520*x^9/9! + 50803200*x^10/10! + ...
B(B(B(B(x)))) = 20922789888000*x^16/16! + 2845499424768000*x^17/17! + ...
etc.
where A(x) = x * exp(x + B(x) + B(B(x)) + B(B(B(x))) + B(B(B(B(x)))) + ...).
PROG
(PARI) {a(n) = my(A=x, V=[0, 1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoeff( subst(A, x, x*A) - exp(-x +x*O(x^(#V)))*A^2, #V) ); n!*V[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 08 2024
STATUS
approved