login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367389
Expansion of g.f. A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
0
1, 2, 6, 16, 52, 152, 512, 1568, 5392, 16992, 59232, 190336, 669952, 2183680, 7742464, 25512448, 90974464, 302368256, 1083175424, 3625435136, 13036688384, 43889186816, 158323564544, 535639556096, 1937483350016, 6582584115200, 23865932414976, 81381420826624, 295661476642816
OFFSET
0,2
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
(2) A(x) = 1/(1-2*x - Sum_{n>=1} 2^n * binomial(3*n-1,n)/(3*n-1) * x^(2*n) ).
(3) A(x) = 1/(-2*x + x/Series_Reversion( x - 2*x^3 )).
(4) [x^(n-1)] (1 + (n+1)*x*A(x))^n / A(x)^n = n*(n-1)^(n-2) for n > 1.
(5) [x^(n-1)] (1 + n*x*A(x))^n / A(x)^n = -n*(n-2)^(n-2) for n > 1.
(6) [x^(n-1)] (1 + (n-2)*x*A(x))^n / A(x)^n = -n*(5*n-14)*(n-4)^(n-3) for n >= 1.
a(n) ~ (15*sqrt(3/2)/2 + 9 + (15*sqrt(3/2)/2 - 9)*(-1)^n) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2) * 2^(n/2)). - Vaclav Kotesovec, Dec 24 2023
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 52*x^4 + 152*x^5 + 512*x^6 + 1568*x^7 + 5392*x^8 + 16992*x^9 + 59232*x^10 + ...
where
1/A(x) = 1 - 2*x - 2*x^2 - 8*x^4 - 56*x^6 - 480*x^8 - 4576*x^10 - 46592*x^12 - ... - 2^n*binomial(3*n-1,n)/(3*n-1) * x^(2*n) - ...
MATHEMATICA
CoefficientList[1/(-2*x + x/InverseSeries[Series[x - 2*x^3, {x, 0, 30}], x]), x] (* Vaclav Kotesovec, Dec 24 2023 *)
PROG
(PARI) {a(n) = my(A = 1/(-2*x + x/serreverse(x - 2*x^3 + O(x^(n+2))))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A;
A[#A] = polcoeff( (1 + (m+1)*x*Ser(A))^m / Ser(A)^m , m-1)/m - (m-1)^(m-2) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A153231.
Sequence in context: A258797 A360232 A214983 * A214833 A263593 A003446
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 20 2023
STATUS
approved