login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n.
18

%I #35 Feb 08 2023 07:24:21

%S 1,1,5,37,393,5481,95053,1975821,47939601,1330923601,41629292181,

%T 1448989481589,55561575788953,2327512861252281,105767732851318749,

%U 5182512561142513501,272391086209524010017,15287595381259195453089,912525533175190887597349,57726267762799335649572549

%N E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n.

%H G. C. Greubel, <a href="/A273954/b273954.txt">Table of n, a(n) for n = 0..370</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f.: -LambertW(-x*exp(x)) / (x*exp(x)). [corrected by _Vaclav Kotesovec_, Jun 23 2016]

%F E.g.f.: exp( L(x) ) where L(x) = -LambertW(-x*exp(x)) is the e.g.f. of A216857.

%F a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n-1) * LambertW(exp(-1))^n). - _Vaclav Kotesovec_, Jun 23 2016

%F E.g.f.: A(x) = exp(x*exp(x)*A(x)). - _Alexander Burstein_, Aug 11 2018

%F From _Peter Luschny_, Jan 29 2023: (Start)

%F a(n) = Sum_{j=0..n} binomial(n, j) * j^(n - j) * (j + 1)^(j - 1).

%F a(n) = Sum_{k=0..n} (-1)^k*A161628(n, k).

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*A244119(n, k). (End)

%e E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +...

%e such that

%e A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +...

%e The logarithm of A(x) begins:

%e log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +...

%e which equals -LambertW(-x*exp(x)).

%p A273954 := n -> add(binomial(n, j) * j^(n - j) * (j + 1)^(j - 1), j = 0..n):

%p seq(A273954(n), n = 0..24); # _Peter Luschny_, Jan 29 2023

%t CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jun 23 2016 *)

%o (PARI) {a(n) = my(A=1+x); for(i=1,n, A = sum(m=0,n,x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ _G. C. Greubel_, Nov 16 2017

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x*exp(x))^k/k!))) \\ _Seiichi Manyama_, Feb 08 2023

%Y Cf. A273953, A216857, A357247, A360176 (column 1 unsigned).

%Y Cf. A161628, A244119.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jun 14 2016