login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292927
G.f. A(x) satisfies: A( x^2*A(x) - x*A(x)^3 ) = x^3.
3
1, 1, 3, 11, 52, 258, 1343, 7257, 40275, 228278, 1315922, 7691196, 45473095, 271482064, 1634359974, 9910367591, 60474714189, 371087272878, 2288372703482, 14174212020218, 88145412404781, 550128210470715, 3444680265887877, 21633697884627237, 136238869051956545, 860130515526195618, 5442975808350831237, 34517730741744461395, 219338548934112758627
OFFSET
1,3
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 6.705143079646414499260567437823218217... and c = 0.03594678018676382296451433... - Vaclav Kotesovec, Oct 10 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 52*x^5 + 258*x^6 + 1343*x^7 + 7257*x^8 + 40275*x^9 + 228278*x^10 + 1315922*x^11 + 7691196*x^12 + 45473095*x^13 + 271482064*x^14 + 1634359974*x^15 + 9910367591*x^16 +...
such that A( x^2*A(x) - x*A(x)^3 ) = x^3.
RELATED SERIES.
x^2*A(x) - x*A(x)^3 = x^3 - x^6 - x^9 - x^12 - 8*x^15 - 13*x^18 - 37*x^21 - 159*x^24 - 388*x^27 - 1403*x^30 - 5090*x^33 - 15931*x^36 - 58532*x^39 +...
Let B(x) be the series reversion of A(x), so that B(A(x)) = x, then
B(x) = x - x^2 - x^3 - x^4 - 8*x^5 - 13*x^6 - 37*x^7 - 159*x^8 - 388*x^9 - 1403*x^10 - 5090*x^11 - 15931*x^12 - 58532*x^13 - 207536*x^14 - 719812*x^15 - 2641077*x^16 - 9504900*x^17 - 34393816*x^18 - 126750932*x^19 - 464389638*x^20 +...
then x^2*A(x) - x*A(x)^3 = B(x^3).
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -Vec(subst(F, x, x^2*F - x*F^3))[#A] ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2017
STATUS
approved