login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292929 G.f.: A(x,q) = sqrt( Q(x,q) / Q(x,-q) ), where Q(x,q) = Sum_{n=-oo..+oo} (x - q^n)^n. 7
1, 2, -2, 2, -4, 2, 2, -4, 6, -4, 2, -4, 8, -12, 6, 2, -4, 8, -14, 16, -8, 2, -4, 8, -12, 18, -24, 12, 2, -4, 8, -12, 20, -36, 38, -16, 2, -4, 8, -12, 24, -44, 56, -52, 22, 2, -4, 8, -12, 24, -40, 52, -74, 74, -30, 2, -4, 8, -12, 24, -32, 38, -76, 116, -104, 40, 2, -4, 8, -12, 24, -32, 48, -96, 136, -164, 142, -52, 2, -4, 8, -12, 24, -32, 64, -124, 138, -164, 224, -192, 68, 2, -4, 8, -12, 24, -32, 64, -100, 86, -134, 252, -324, 258, -88, 2, -4, 8, -12, 24, -32, 64, -68, 32, -148, 316, -396, 442, -340, 112, 2, -4, 8, -12, 24, -32, 64, -68, 88, -276, 398, -384, 482, -592, 446, -144, 2, -4, 8, -12, 24, -32, 64, -68, 152, -376, 328, -192, 384, -684, 808, -584, 182, 2, -4, 8, -12, 24, -32, 64, -68, 152, -248, 24, -22, 462, -790, 990, -1074, 752, -228, 2, -4, 8, -12, 24, -32, 64, -68, 152, -120, -152, -288, 1048, -1064, 982, -1272, 1410, -964, 286, 2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 136, -988, 1402, -708, 548, -1168, 1748, -1860, 1232, -356 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to the g.f. of A108494: sqrt( theta_4(q) / theta_4(-q) ).

Note the related identities:

(1) Sum_{n=-oo..+oo} (x - q^n)^(n-1) = 0.

(2) Sum_{n=-oo..+oo} (x - q^n)^(n+1) = x * Sum_{n=-oo..+oo} (x - q^n)^n.

(3) Sum_{n=-oo..+oo} (x - q^n)^n = 1/(1-x) + Sum_{n>=1} (-1)^n * q^(n^2) * (2 - x*q^n)/(1 - x*q^n)^(n+1).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..5150 as read by antidiagonals 0..100 of a rectangular array.

FORMULA

Antidiagonal sums equal zero after the initial '1'.

G.f. of Row 0: Product_{n>=1} (1 - q^(2*n-1)) / (1 + q^(2*n-1)); see A108494.

G.f. of Row 1: 2*q * Product_{n>=1} (1 + q^(2*n))/((1 + q^n)*(1 + q^(2*n-1))*(1 + q^(4*n))).

EXAMPLE

G.f.: A(x,q) = Sum_{n>=0} x^n * Sum_{k>=0} T(n,k) * q^(n+k), where

A(x,q) = sqrt( Q(x,q) / Q(x,-q) ) and Q(x,q) is the g.f. of A293600:

Q(x,q) = (1 - 2*q + 2*q^4 - 2*q^9 + 2*q^16 - 2*q^25 + 2*q^36 +...)

+ x*(1 - 3*q^2 + 5*q^6 - 7*q^12 + 9*q^20 - 11*q^30 + 13*q^42 +...)

+ x^2*(1 - 4*q^3 + 9*q^8 - 16*q^15 + 25*q^24 - 36*q^35 + 49*q^48 +...)

+ x^3*(1 - 5*q^4 + 14*q^10 - 30*q^18 + 55*q^28 - 91*q^40 + 140*q^54 +...)

+ x^4*(1 - 6*q^5 + 20*q^12 - 50*q^21 + 105*q^32 - 196*q^45 + 336*q^60 +...)

+ x^5*(1 - 7*q^6 + 27*q^14 - 77*q^24 + 182*q^36 - 378*q^50 + 714*q^66 +...)

+ x^6*(1 - 8*q^7 + 35*q^16 - 112*q^27 + 294*q^40 - 672*q^55 + 1386*q^72 +...)

+ x^7*(1 - 9*q^8 + 44*q^18 - 156*q^30 + 450*q^44 - 1122*q^60 + 792*q^78 +...)

+ ...

Explicitly, the g.f. of this table begins:

A(x,q) = (1 - 2*q + 2*q^2 - 4*q^3 + 6*q^4 - 8*q^5 + 12*q^6 - 16*q^7 + 22*q^8 - 30*q^9 + 40*q^10 - 52*q^11 + 68*q^12 - 88*q^13 +...)

+ x*(2*q - 4*q^2 + 6*q^3 - 12*q^4 + 16*q^5 - 24*q^6 + 38*q^7 - 52*q^8 + 74*q^9 - 104*q^10 + 142*q^11 - 192*q^12 + 258*q^13 - 340*q^14 +...)

+ x^2*(2*q^2 - 4*q^3 + 8*q^4 - 14*q^5 + 18*q^6 - 36*q^7 + 56*q^8 - 74*q^9 + 116*q^10 - 164*q^11 + 224*q^12 - 324*q^13 + 442*q^14 - 592*q^15 +...)

+ x^3*(2*q^3 - 4*q^4 + 8*q^5 - 12*q^6 + 20*q^7 - 44*q^8 + 52*q^9 - 76*q^10 + 136*q^11 - 164*q^12 + 252*q^13 - 396*q^14 + 482*q^15 - 684*q^16 +...)

+ x^4*(2*q^4 - 4*q^5 + 8*q^6 - 12*q^7 + 24*q^8 - 40*q^9 + 38*q^10 - 96*q^11 + 138*q^12 - 134*q^13 + 316*q^14 - 384*q^15 + 384*q^16 - 790*q^17 +...)

+ x^5*(2*q^5 - 4*q^6 + 8*q^7 - 12*q^8 + 24*q^9 - 32*q^10 + 48*q^11 - 124*q^12 + 86*q^13 - 148*q^14 + 398*q^15 - 192*q^16 + 462*q^17 - 1064*q^18 +...)

+ x^6*(2*q^6 - 4*q^7 + 8*q^8 - 12*q^9 + 24*q^10 - 32*q^11 + 64*q^12 - 100*q^13 + 32*q^14 - 276*q^15 + 328*q^16 - 22*q^17 + 1048*q^18 - 708*q^19 +...)

+ x^7*(2*q^7 - 4*q^8 + 8*q^9 - 12*q^10 + 24*q^11 - 32*q^12 + 64*q^13 - 68*q^14 + 88*q^15 - 376*q^16 + 24*q^17 - 288*q^18 + 1402*q^19 + 936*q^20 +...)

+ x^8*(2*q^8 - 4*q^9 + 8*q^10 - 12*q^11 + 24*q^12 - 32*q^13 + 64*q^14 - 68*q^15 + 152*q^16 - 248*q^17 - 152*q^18 - 988*q^19 + 554*q^20 + 1554*q^21 +...)

+ x^9*(2*q^9 - 4*q^10 + 8*q^11 - 12*q^12 + 24*q^13 - 32*q^14 + 64*q^15 - 68*q^16 + 152*q^17 - 120*q^18 + 136*q^19 - 1276*q^20 - 1016*q^21 - 912*q^22+...)

+ x^10*(2*q^10 - 4*q^11 + 8*q^12 - 12*q^13 + 24*q^14 - 32*q^15 + 64*q^16 - 68*q^17 + 152*q^18 - 120*q^19 + 392*q^20 - 636*q^21 - 1432*q^22 - 4352*q^23 +...)

+ x^11*(2*q^11 - 4*q^12 + 8*q^13 - 12*q^14 + 24*q^15 - 32*q^16 + 64*q^17 - 68*q^18 + 152*q^19 - 120*q^20 + 392*q^21 - 124*q^22 - 24*q^23 - 4800*q^24+...)

+ x^12*(2*q^12 - 4*q^13 + 8*q^14 - 12*q^15 + 24*q^16 - 32*q^17 + 64*q^18 - 68*q^19 + 152*q^20 - 120*q^21 + 392*q^22 - 124*q^23 + 1000*q^24 - 1728*q^25 +...)

+ ...

G.F. OF ROWS.

The coefficient of x^0 in A(x,q) is

(R0) Product_{n>=1} (1 - q^(2*n-1)) / (1 + q^(2*n-1)).

The coefficient of x in A(x,q) is

(R1) 2*q * Product_{n>=1} (1 + q^(2*n))/((1 + q^n)*(1 + q^(2*n-1))*(1 + q^(4*n))).

RECTANGULAR ARRAY.

This table of coefficients T(n,k) of x^n*y^(n+k) in A(x,q) begins:

[1, -2, 2, -4, 6, -8, 12, -16, 22, -30, 40, -52, 68, -88, 112, -144, ...];

[2, -4, 6, -12, 16, -24, 38, -52, 74, -104, 142, -192, 258, -340, 446, ...];

[2, -4, 8, -14, 18, -36, 56, -74, 116, -164, 224, -324, 442, -592, 808, ...];

[2, -4, 8, -12, 20, -44, 52, -76, 136, -164, 252, -396, 482, -684, 990, ...];

[2, -4, 8, -12, 24, -40, 38, -96, 138, -134, 316, -384, 384, -790, 982, ...];

[2, -4, 8, -12, 24, -32, 48, -124, 86, -148, 398, -192, 462, -1064, 548, ...];

[2, -4, 8, -12, 24, -32, 64, -100, 32, -276, 328, -22, 1048, -708, -220, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 88, -376, 24, -288, 1402, 936, 1146, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -248, -152, -988, 554, 1554, 5628, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 136, -1276, -1016, -912, 6428, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -636, -1432, -4352, -320, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, -24, -4800, -7696, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, 1000, -1728, -7696, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, 1000, 320, -1040, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, 1000, 320, 3056, ...];

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, 1000, 320, 3056, 2836, ...]; ...

The limit of the rows approach A293601, which begins:

[2, -4, 8, -12, 24, -32, 64, -68, 152, -120, 392, -124, 1000, 320, 3056, 2836, 10280, 15112, 38668, 68348, 154152, 297948, 633352, 1269884, 2649892, ...].

RATIOS OF ROW G.F.

The ratios of the row generating functions are as follows.

2 + 2*q^2 + 2*q^6 + 2*q^8 + 2*q^10 + 2*q^12 + 2*q^14 +...

1 + q^2 + q^3 - 3*q^5 + q^6 + 4*q^7 + q^8 - 3*q^9 + q^10 + 3*q^11 +...

1 + q^3 + 3*q^4 - 2*q^5 - 11*q^6 - 3*q^7 + 25*q^8 + 29*q^9 - 33*q^10 +...

1 + 2*q^4 + 6*q^5 - 3*q^6 - 28*q^7 - 27*q^8 + 39*q^9 + 160*q^10 +...

1 + 4*q^5 + 13*q^6 - 4*q^7 - 62*q^8 - 85*q^9 + 19*q^10 + 334*q^11 +...

1 + 8*q^6 + 28*q^7 - 3*q^8 - 134*q^9 - 219*q^10 - 43*q^11 + 571*q^12 +...

1 + 16*q^7 + 60*q^8 + 6*q^9 - 284*q^10 - 557*q^11 - 229*q^12 + 1264*q^13 +...

1 + 32*q^8 + 128*q^9 + 40*q^10 - 590*q^11 - 1380*q^12 - 875*q^13 +...

1 + 64*q^9 + 272*q^10 + 144*q^11 - 1201*q^12 - 3347*q^13 - 2866*q^14 +...

1 + 128*q^10 + 576*q^11 + 432*q^12 - 2392*q^13 - 7966*q^14 - 8598*q^15 +...

1 + 256*q^11 + 1216*q^12 + 1184*q^13 - 4648*q^14 - 18642*q^15 +...

...

CROSSREFS

Cf. A293600, A293601, A108494 (row 0), A293132 (row 1), A294065 (row 2), A294066 (row 3), A294067  (row 4).

Sequence in context: A066671 A159802 A255336 * A049627 A278223 A134058

Adjacent sequences:  A292926 A292927 A292928 * A292930 A292931 A292932

KEYWORD

sign,tabl

AUTHOR

Paul D. Hanna, Oct 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)