login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291614
G.f. A(x) satisfies: A( x*A(x)^2 - x^2*A(x) ) = x^4.
2
1, 1, -1, 2, -5, 13, -40, 126, -409, 1363, -4617, 15896, -55444, 195480, -695636, 2495118, -9011281, 32741839, -119601339, 438968354, -1618006837, 5986803522, -22229028994, 82798248894, -309299225632, 1158483827048, -4349740078410, 16368842606820, -61727972554068, 233233590724532, -882851162632794, 3347489178793192, -12712739206990305
OFFSET
1,4
LINKS
FORMULA
a(n) ~ (-1)^n * c * d^n / n^(3/2), where d = 3.98431348330228671611917... and c = 0.0351241010191430532... - Vaclav Kotesovec, Aug 28 2017
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 + 2*x^4 - 5*x^5 + 13*x^6 - 40*x^7 + 126*x^8 - 409*x^9 + 1363*x^10 - 4617*x^11 + 15896*x^12 - 55444*x^13 + 195480*x^14 - 695636*x^15 + 2495118*x^16 - 9011281*x^17 + 32741839*x^18 - 119601339*x^19 + 438968354*x^20 +...
such that A( x*A(x)^2 - x^2*A(x) ) = x^4.
RELATED SERIES.
x*A(x)^2 - x^2*A(x) = x^4 - x^8 + 3*x^12 - 12*x^16 + 55*x^20 - 272*x^24 +...
Let Ai(x) denote the series reversion of A(x), then
Ai(x) = x - x^2 + 3*x^3 - 12*x^4 + 55*x^5 - 272*x^6 + 1418*x^7 - 7674*x^8 + 42703*x^9 - 242802*x^10 + 1404430*x^11 - 8238084*x^12 + 48888198*x^13 - 292986110*x^14 + 1770676784*x^15 - 10779271798*x^16 + 66038787055*x^17 - 406856161566*x^18 + 2519083078066*x^19 - 15666603475448*x^20 +...
where Ai( Ai(x)^4 ) = x^2*Ai(x) - x*Ai(x)^2.
PROG
(PARI) {a(n) = my(A=[1, 1, -1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^4 - subst(F, x, x*F^2 - x^2*F), #A+2) ); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A149862 A149863 A371714 * A202153 A149864 A149865
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 27 2017
STATUS
approved