login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042785
Denominators of continued fraction convergents to sqrt(923).
2
1, 2, 3, 5, 8, 21, 1268, 2557, 3825, 6382, 10207, 26796, 1617967, 3262730, 4880697, 8143427, 13024124, 34191675, 2064524624, 4163240923, 6227765547, 10391006470, 16618772017, 43628550504, 2634331802257, 5312292155018, 7946623957275, 13258916112293
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 1276, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^10-2*x^9+3*x^8-5*x^7+8*x^6-21*x^5-8*x^4-5*x^3-3*x^2-2*x-1) / (x^12-1276*x^6+1). - Colin Barker, Dec 23 2013
a(n) = 1276*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 23 2013
MAPLE
convert(sqrt(923), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[923], 30]] (* Wesley Ivan Hurt, Dec 23 2013 *)
CoefficientList[Series[-(x^10 - 2 * x^9 + 3 * x^8 - 5 * x^7 + 8 * x^6 - 21 * x^5 - 8 * x^4 - 5 * x^3 - 3 * x^2 - 2 * x - 1)/(x^12 - 1276 * x^6 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 23 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 1276, 0, 0, 0, 0, 0, -1}, {1, 2, 3, 5, 8, 21, 1268, 2557, 3825, 6382, 10207, 26796}, 30] (* Harvey P. Dale, Jul 04 2017 *)
PROG
(Magma) I:=[1, 2, 3, 5, 8, 21, 1268, 2557, 3825, 6382, 10207, 26796]; [n le 12 select I[n] else 1276*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013
CROSSREFS
Sequence in context: A053056 A041157 A178356 * A136682 A107467 A191425
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Dec 23 2013
STATUS
approved