The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270352 Denominators of r-Egyptian fraction expansion for 1/Pi, where r = (1, 1/2, 1/4, 1/8, ...) 1
 4, 8, 44, 977, 498723, 138012074956, 45087947486104434546449, 2223745971024423874814212532278502253766982404, 3439676840537267257806008796995789895364959784333600339427716437786254731225969490712842205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..11 Eric Weisstein's World of Mathematics, Egyptian Fraction EXAMPLE 1/Pi = 1/4 + 1/(2*8) + 1/(4*44) + ... MATHEMATICA r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1/Pi; Table[n[x, k], {k, 1, z}] PROG (PARI) r(k) = 2/2^k; f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); ); a(k, x=1/Pi) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016 CROSSREFS Cf. A269993. Sequence in context: A285751 A189538 A351071 * A183394 A291948 A002470 Adjacent sequences:  A270349 A270350 A270351 * A270353 A270354 A270355 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Mar 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 17:57 EDT 2022. Contains 354043 sequences. (Running on oeis4.)